Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1999_65_3_a2, author = {A. Yu. Makovetskii}, title = {Transformations of special spines and special polyhedra}, journal = {Matemati\v{c}eskie zametki}, pages = {354--361}, publisher = {mathdoc}, volume = {65}, number = {3}, year = {1999}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1999_65_3_a2/} }
A. Yu. Makovetskii. Transformations of special spines and special polyhedra. Matematičeskie zametki, Tome 65 (1999) no. 3, pp. 354-361. http://geodesic.mathdoc.fr/item/MZM_1999_65_3_a2/
[1] Alexander J. W., “The combinatorial theory of complexes”, Ann. of Math. (2), 31 (1930), 294–322 | DOI | MR
[2] Singer J., “Three-dimensional manifolds and their Heegaard diagrams”, Trans. Amer. Math. Soc., 35 (1933), 88–111 | DOI | MR | Zbl
[3] Casler B. G., “An embedding theorem for connected $3$-manifolds with boundary”, Proc. Amer. Math. Soc., 16 (1965), 559–566 | DOI | MR | Zbl
[4] Matveev S. V., “Transformations of special spines and Zeeman conjecture”, Math. USSR Izv., 31 (1988), 423–434 | DOI | MR | Zbl
[5] Piergallini R., “Standard moves for standard polyhedra and spines”, Rend. Circ. Mat. Palermo (2), 37:18 (1988), 391–414 | MR
[6] Macovetsky A., “Transformations on special spines of $3$-manifold and branched surfaces”, Knots'96 Conference, Workshop Report for 5th MSJ International Research Institute Knot Theory, Tokyo, 1996, 126–127
[7] Gillman D., Rolfsen D., “The Zeeman conjecture for standard spines is equivalent to the Poincaré conjecture”, Topology, 22 (1983), 315–323 | DOI | MR | Zbl
[8] Gillman D., Rolfsen D., “Three-manifolds embedded in small $3$-complexes”, Internat. J. Math., 3 (1992), 179–183 | DOI | MR | Zbl
[9] Ishii I., “Flows and spines”, Tokyo J.Math., 9 (1986), 505–525 | MR | Zbl
[10] Ishii I., “Combinatirial construction of a non-singular flow on $3$-manifold”, Kobe J. Math., 3 (1986), 201–208 | Zbl
[11] Ishii I., “Moves for flow spines and topological invariants of $3$-manifold”, Tokyo J. Math., 15 (1992), 297–312 | MR | Zbl