Transformations of special spines and special polyhedra
Matematičeskie zametki, Tome 65 (1999) no. 3, pp. 354-361.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_1999_65_3_a2,
     author = {A. Yu. Makovetskii},
     title = {Transformations of special spines and special polyhedra},
     journal = {Matemati\v{c}eskie zametki},
     pages = {354--361},
     publisher = {mathdoc},
     volume = {65},
     number = {3},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1999_65_3_a2/}
}
TY  - JOUR
AU  - A. Yu. Makovetskii
TI  - Transformations of special spines and special polyhedra
JO  - Matematičeskie zametki
PY  - 1999
SP  - 354
EP  - 361
VL  - 65
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1999_65_3_a2/
LA  - ru
ID  - MZM_1999_65_3_a2
ER  - 
%0 Journal Article
%A A. Yu. Makovetskii
%T Transformations of special spines and special polyhedra
%J Matematičeskie zametki
%D 1999
%P 354-361
%V 65
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1999_65_3_a2/
%G ru
%F MZM_1999_65_3_a2
A. Yu. Makovetskii. Transformations of special spines and special polyhedra. Matematičeskie zametki, Tome 65 (1999) no. 3, pp. 354-361. http://geodesic.mathdoc.fr/item/MZM_1999_65_3_a2/

[1] Alexander J. W., “The combinatorial theory of complexes”, Ann. of Math. (2), 31 (1930), 294–322 | DOI | MR

[2] Singer J., “Three-dimensional manifolds and their Heegaard diagrams”, Trans. Amer. Math. Soc., 35 (1933), 88–111 | DOI | MR | Zbl

[3] Casler B. G., “An embedding theorem for connected $3$-manifolds with boundary”, Proc. Amer. Math. Soc., 16 (1965), 559–566 | DOI | MR | Zbl

[4] Matveev S. V., “Transformations of special spines and Zeeman conjecture”, Math. USSR Izv., 31 (1988), 423–434 | DOI | MR | Zbl

[5] Piergallini R., “Standard moves for standard polyhedra and spines”, Rend. Circ. Mat. Palermo (2), 37:18 (1988), 391–414 | MR

[6] Macovetsky A., “Transformations on special spines of $3$-manifold and branched surfaces”, Knots'96 Conference, Workshop Report for 5th MSJ International Research Institute Knot Theory, Tokyo, 1996, 126–127

[7] Gillman D., Rolfsen D., “The Zeeman conjecture for standard spines is equivalent to the Poincaré conjecture”, Topology, 22 (1983), 315–323 | DOI | MR | Zbl

[8] Gillman D., Rolfsen D., “Three-manifolds embedded in small $3$-complexes”, Internat. J. Math., 3 (1992), 179–183 | DOI | MR | Zbl

[9] Ishii I., “Flows and spines”, Tokyo J.Math., 9 (1986), 505–525 | MR | Zbl

[10] Ishii I., “Combinatirial construction of a non-singular flow on $3$-manifold”, Kobe J. Math., 3 (1986), 201–208 | Zbl

[11] Ishii I., “Moves for flow spines and topological invariants of $3$-manifold”, Tokyo J. Math., 15 (1992), 297–312 | MR | Zbl