A~generic homeomorphism does not possess the Lipschitz shadowing property
Matematičeskie zametki, Tome 65 (1999) no. 3, pp. 477-480.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_1999_65_3_a18,
     author = {O. B. Plamenevskaya},
     title = {A~generic homeomorphism does not possess the {Lipschitz} shadowing property},
     journal = {Matemati\v{c}eskie zametki},
     pages = {477--480},
     publisher = {mathdoc},
     volume = {65},
     number = {3},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1999_65_3_a18/}
}
TY  - JOUR
AU  - O. B. Plamenevskaya
TI  - A~generic homeomorphism does not possess the Lipschitz shadowing property
JO  - Matematičeskie zametki
PY  - 1999
SP  - 477
EP  - 480
VL  - 65
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1999_65_3_a18/
LA  - ru
ID  - MZM_1999_65_3_a18
ER  - 
%0 Journal Article
%A O. B. Plamenevskaya
%T A~generic homeomorphism does not possess the Lipschitz shadowing property
%J Matematičeskie zametki
%D 1999
%P 477-480
%V 65
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1999_65_3_a18/
%G ru
%F MZM_1999_65_3_a18
O. B. Plamenevskaya. A~generic homeomorphism does not possess the Lipschitz shadowing property. Matematičeskie zametki, Tome 65 (1999) no. 3, pp. 477-480. http://geodesic.mathdoc.fr/item/MZM_1999_65_3_a18/

[1] Pilyugin S. Yu., The Space of Dynamical Systems with the $C^0$-Topology, Lecture Notes in Math., 1571, Springer, Berlin–Heidelberg, 1994 | MR | Zbl

[2] Corless R., Pilyugin S. Yu., J. Math. Anal. Appl., 189 (1995), 409–423 | DOI | MR | Zbl

[3] Odani K., Proc. Amer. Math. Soc., 110 (1990), 281–284 | DOI | MR | Zbl

[4] Pilyugin S. Yu., Plamenevskaya O. B., “Shadowing is generic”, Topology Appl. (to appear) | Zbl