A generic homeomorphism does not possess the Lipschitz shadowing property
Matematičeskie zametki, Tome 65 (1999) no. 3, pp. 477-480
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{MZM_1999_65_3_a18,
author = {O. B. Plamenevskaya},
title = {A~generic homeomorphism does not possess the {Lipschitz} shadowing property},
journal = {Matemati\v{c}eskie zametki},
pages = {477--480},
year = {1999},
volume = {65},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1999_65_3_a18/}
}
O. B. Plamenevskaya. A generic homeomorphism does not possess the Lipschitz shadowing property. Matematičeskie zametki, Tome 65 (1999) no. 3, pp. 477-480. http://geodesic.mathdoc.fr/item/MZM_1999_65_3_a18/
[1] Pilyugin S. Yu., The Space of Dynamical Systems with the $C^0$-Topology, Lecture Notes in Math., 1571, Springer, Berlin–Heidelberg, 1994 | MR | Zbl
[2] Corless R., Pilyugin S. Yu., J. Math. Anal. Appl., 189 (1995), 409–423 | DOI | MR | Zbl
[3] Odani K., Proc. Amer. Math. Soc., 110 (1990), 281–284 | DOI | MR | Zbl
[4] Pilyugin S. Yu., Plamenevskaya O. B., “Shadowing is generic”, Topology Appl. (to appear) | Zbl