Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1999_65_3_a18, author = {O. B. Plamenevskaya}, title = {A~generic homeomorphism does not possess the {Lipschitz} shadowing property}, journal = {Matemati\v{c}eskie zametki}, pages = {477--480}, publisher = {mathdoc}, volume = {65}, number = {3}, year = {1999}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1999_65_3_a18/} }
O. B. Plamenevskaya. A~generic homeomorphism does not possess the Lipschitz shadowing property. Matematičeskie zametki, Tome 65 (1999) no. 3, pp. 477-480. http://geodesic.mathdoc.fr/item/MZM_1999_65_3_a18/
[1] Pilyugin S. Yu., The Space of Dynamical Systems with the $C^0$-Topology, Lecture Notes in Math., 1571, Springer, Berlin–Heidelberg, 1994 | MR | Zbl
[2] Corless R., Pilyugin S. Yu., J. Math. Anal. Appl., 189 (1995), 409–423 | DOI | MR | Zbl
[3] Odani K., Proc. Amer. Math. Soc., 110 (1990), 281–284 | DOI | MR | Zbl
[4] Pilyugin S. Yu., Plamenevskaya O. B., “Shadowing is generic”, Topology Appl. (to appear) | Zbl