On matrices that admit unitary reduction to band form
Matematičeskie zametki, Tome 64 (1998) no. 6, pp. 871-880.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved in the paper that any low rank perturbation of a Hermitian matrix is unitarily reducible to band form. Moreover, if a normal matrix is unitarily reducible to band form, then any of its rank one perturbations is unitarily reducible as well.
@article{MZM_1998_64_6_a7,
     author = {Kh. D. Ikramov and L. \'El'zner},
     title = {On matrices that admit unitary reduction to band form},
     journal = {Matemati\v{c}eskie zametki},
     pages = {871--880},
     publisher = {mathdoc},
     volume = {64},
     number = {6},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_6_a7/}
}
TY  - JOUR
AU  - Kh. D. Ikramov
AU  - L. Él'zner
TI  - On matrices that admit unitary reduction to band form
JO  - Matematičeskie zametki
PY  - 1998
SP  - 871
EP  - 880
VL  - 64
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_64_6_a7/
LA  - ru
ID  - MZM_1998_64_6_a7
ER  - 
%0 Journal Article
%A Kh. D. Ikramov
%A L. Él'zner
%T On matrices that admit unitary reduction to band form
%J Matematičeskie zametki
%D 1998
%P 871-880
%V 64
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_64_6_a7/
%G ru
%F MZM_1998_64_6_a7
Kh. D. Ikramov; L. Él'zner. On matrices that admit unitary reduction to band form. Matematičeskie zametki, Tome 64 (1998) no. 6, pp. 871-880. http://geodesic.mathdoc.fr/item/MZM_1998_64_6_a7/

[1] Bunse-Gerstner A., Elsner L., “Schur parameter pencils for the solution of the unitary eigenproblem”, Linear Algebra Appl., 154–156 (1991), 741–778 | DOI | MR | Zbl

[2] Elsner L., Ikramov Kh. D., “On a condensed form for normal matrices under finite sequences of elementary unitary similarities”, Linear Algebra Appl., 254 (1997), 79–98 | DOI | MR | Zbl

[3] Longstaff W. E., “On tridiagonalization of matrices”, Linear Algebra Appl., 109 (1988), 153–163 | DOI | MR | Zbl

[4] Sturmfels B., “Tridiagonalization of complex matrices and a problem of Longstaff”, Linear Algebra Appl., 109 (1988), 165–166 | DOI | MR | Zbl

[5] Fong C. K., Wu P. Y., “Band-diagonal operators”, Linear Algebra Appl., 248 (1996), 185–204 | DOI | MR | Zbl

[6] Ikramov Kh. D., “Kanonicheskaya forma Shura unitarno kvazidiagonalizuemoi matritsy”, ZhVMiMF, 37:12 (1997), 1411–1415 | MR | Zbl

[7] Gaines F. J., Laffey T. J., Shapiro H. M., “Pairs of matrices with quadratic minimal polynomials”, Linear Algebra Appl., 52–53 (1983), 289–292 | MR | Zbl

[8] Kreyszig E., “Ein Satz über Matrixeigenwerte”, Elem. Math., 25:3 (1970), 60–61 | MR | Zbl

[9] Hoffman A. J., Taussky O., “A characterization of normal matrices”, J. Res. Nat. Bur. Standards, 52 (1954), 17–19 | MR | Zbl

[10] Hartwig R. E., Spindelboeck K., “Matrices for which $A^*$ and $A^+$ commute”, Linear and Multilinear Algebra, 14 (1984), 241–256 | DOI | MR

[11] Krupnik M., “Changing the spectrum of an operator by perturbation”, Linear Algebra Appl., 167 (1992), 113–118 | DOI | MR | Zbl