Generalized Fredholm property and a priori estimates for linear operators on tensor products of Hilbert spaces
Matematičeskie zametki, Tome 64 (1998) no. 6, pp. 902-912.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a linear operator acting in a Hilbert space, the generalized Fredholm property (invertibility modulo a certain ideal) is proved to be equivalent to certain apriori estimates. This result is applied to establish a connection between properties of linear operators on tensor products of Hilbert spaces, such as $n$- and $d$-normality, the (generalized and ordinary) Fredholm property, and appropriate apriori estimates.
@article{MZM_1998_64_6_a10,
     author = {V. S. Pilidi},
     title = {Generalized {Fredholm} property and a priori estimates for linear operators on tensor products of {Hilbert} spaces},
     journal = {Matemati\v{c}eskie zametki},
     pages = {902--912},
     publisher = {mathdoc},
     volume = {64},
     number = {6},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_6_a10/}
}
TY  - JOUR
AU  - V. S. Pilidi
TI  - Generalized Fredholm property and a priori estimates for linear operators on tensor products of Hilbert spaces
JO  - Matematičeskie zametki
PY  - 1998
SP  - 902
EP  - 912
VL  - 64
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_64_6_a10/
LA  - ru
ID  - MZM_1998_64_6_a10
ER  - 
%0 Journal Article
%A V. S. Pilidi
%T Generalized Fredholm property and a priori estimates for linear operators on tensor products of Hilbert spaces
%J Matematičeskie zametki
%D 1998
%P 902-912
%V 64
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_64_6_a10/
%G ru
%F MZM_1998_64_6_a10
V. S. Pilidi. Generalized Fredholm property and a priori estimates for linear operators on tensor products of Hilbert spaces. Matematičeskie zametki, Tome 64 (1998) no. 6, pp. 902-912. http://geodesic.mathdoc.fr/item/MZM_1998_64_6_a10/

[1] Krein S. G., Lineinye uravneniya v banakhovom prostranstve, Nauka, M., 1971

[2] Cordes H. O., “On a class of $C^*$-algebras”, Math. Ann., 170:4 (1967), 283–313 | DOI | MR | Zbl

[3] Pilidi V. S., “O mnogomernykh bisingulyarnykh operatorakh”, Dokl. AN SSSR, 201:1 (1971), 787–789 | MR | Zbl

[4] Calkin J. W., “Two-sided ideals and congruences in the ring of bounded operators”, Ann. of Math., 42:2 (1941), 839–873 | DOI | MR | Zbl

[5] Merfi Dzh., $C^*$-algebry i teoriya operatorov, Faktorial, M., 1997

[6] Edvards R., Funktsionalnyi analiz. Teoriya i prilozheniya, Mir, M., 1968