Generalized Fredholm property and a priori estimates for linear operators on tensor products of Hilbert spaces
Matematičeskie zametki, Tome 64 (1998) no. 6, pp. 902-912
Cet article a éte moissonné depuis la source Math-Net.Ru
For a linear operator acting in a Hilbert space, the generalized Fredholm property (invertibility modulo a certain ideal) is proved to be equivalent to certain apriori estimates. This result is applied to establish a connection between properties of linear operators on tensor products of Hilbert spaces, such as $n$- and $d$-normality, the (generalized and ordinary) Fredholm property, and appropriate apriori estimates.
@article{MZM_1998_64_6_a10,
author = {V. S. Pilidi},
title = {Generalized {Fredholm} property and a priori estimates for linear operators on tensor products of {Hilbert} spaces},
journal = {Matemati\v{c}eskie zametki},
pages = {902--912},
year = {1998},
volume = {64},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_6_a10/}
}
TY - JOUR AU - V. S. Pilidi TI - Generalized Fredholm property and a priori estimates for linear operators on tensor products of Hilbert spaces JO - Matematičeskie zametki PY - 1998 SP - 902 EP - 912 VL - 64 IS - 6 UR - http://geodesic.mathdoc.fr/item/MZM_1998_64_6_a10/ LA - ru ID - MZM_1998_64_6_a10 ER -
V. S. Pilidi. Generalized Fredholm property and a priori estimates for linear operators on tensor products of Hilbert spaces. Matematičeskie zametki, Tome 64 (1998) no. 6, pp. 902-912. http://geodesic.mathdoc.fr/item/MZM_1998_64_6_a10/
[1] Krein S. G., Lineinye uravneniya v banakhovom prostranstve, Nauka, M., 1971
[2] Cordes H. O., “On a class of $C^*$-algebras”, Math. Ann., 170:4 (1967), 283–313 | DOI | MR | Zbl
[3] Pilidi V. S., “O mnogomernykh bisingulyarnykh operatorakh”, Dokl. AN SSSR, 201:1 (1971), 787–789 | MR | Zbl
[4] Calkin J. W., “Two-sided ideals and congruences in the ring of bounded operators”, Ann. of Math., 42:2 (1941), 839–873 | DOI | MR | Zbl
[5] Merfi Dzh., $C^*$-algebry i teoriya operatorov, Faktorial, M., 1997
[6] Edvards R., Funktsionalnyi analiz. Teoriya i prilozheniya, Mir, M., 1968