Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1998_64_5_a0, author = {G. G. Amanzhaev}, title = {On the complexity of the approximate table representation of discrete analogs of functions of finite smoothness in the metric of $L^p$}, journal = {Matemati\v{c}eskie zametki}, pages = {643--647}, publisher = {mathdoc}, volume = {64}, number = {5}, year = {1998}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_5_a0/} }
TY - JOUR AU - G. G. Amanzhaev TI - On the complexity of the approximate table representation of discrete analogs of functions of finite smoothness in the metric of $L^p$ JO - Matematičeskie zametki PY - 1998 SP - 643 EP - 647 VL - 64 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1998_64_5_a0/ LA - ru ID - MZM_1998_64_5_a0 ER -
%0 Journal Article %A G. G. Amanzhaev %T On the complexity of the approximate table representation of discrete analogs of functions of finite smoothness in the metric of $L^p$ %J Matematičeskie zametki %D 1998 %P 643-647 %V 64 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_1998_64_5_a0/ %G ru %F MZM_1998_64_5_a0
G. G. Amanzhaev. On the complexity of the approximate table representation of discrete analogs of functions of finite smoothness in the metric of $L^p$. Matematičeskie zametki, Tome 64 (1998) no. 5, pp. 643-647. http://geodesic.mathdoc.fr/item/MZM_1998_64_5_a0/
[1] Amanzhaev G. G., “O diskretnykh analogakh klassov nepreryvnykh funktsii razlichnoi gladkosti”, Dokl. RAN, 342:2 (1995), 54–58 | MR
[2] Amanzhaev G. G., “O diskretnykh analogakh klassov funktsii, zadavaemykh modulem nepreryvnosti $n$-i proizvodnoi”, Vestn. MGU. Ser. 1. Matem., mekh., 1996, no. 2, 3–8
[3] Amanzhaev G. G., “O diskretnykh analogakh funktsii drobnoi gladkosti”, Vestn. MGU. Ser. 1. Matem., mekh., 1996, no. 4, 3–7 | MR | Zbl
[4] Gelfond A. O., Ischislenie konechnykh raznostei, Nauka, M., 1967
[5] Diskretnaya matematika i matematicheskie voprosy kibernetiki, T. 1, eds. Yablonskii S. V., Lupanov O. B., Nauka, M., 1974