On the complexity of the approximate table representation of discrete analogs of functions of finite smoothness in the metric of $L^p$
Matematičeskie zametki, Tome 64 (1998) no. 5, pp. 643-647
Voir la notice de l'article provenant de la source Math-Net.Ru
For discrete analogs of classes of functions of finite smoothness, we study the quantity $\log\operatorname{Approx}$ characterizing the minimal necessary length of tables that allow us to reconstruct functions from these classes with error not exceeding 1 in the metric of the space $L^p$.
@article{MZM_1998_64_5_a0,
author = {G. G. Amanzhaev},
title = {On the complexity of the approximate table representation of discrete analogs of functions of finite smoothness in the metric of $L^p$},
journal = {Matemati\v{c}eskie zametki},
pages = {643--647},
publisher = {mathdoc},
volume = {64},
number = {5},
year = {1998},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_5_a0/}
}
TY - JOUR AU - G. G. Amanzhaev TI - On the complexity of the approximate table representation of discrete analogs of functions of finite smoothness in the metric of $L^p$ JO - Matematičeskie zametki PY - 1998 SP - 643 EP - 647 VL - 64 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1998_64_5_a0/ LA - ru ID - MZM_1998_64_5_a0 ER -
%0 Journal Article %A G. G. Amanzhaev %T On the complexity of the approximate table representation of discrete analogs of functions of finite smoothness in the metric of $L^p$ %J Matematičeskie zametki %D 1998 %P 643-647 %V 64 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_1998_64_5_a0/ %G ru %F MZM_1998_64_5_a0
G. G. Amanzhaev. On the complexity of the approximate table representation of discrete analogs of functions of finite smoothness in the metric of $L^p$. Matematičeskie zametki, Tome 64 (1998) no. 5, pp. 643-647. http://geodesic.mathdoc.fr/item/MZM_1998_64_5_a0/