On the complexity of the approximate table representation of discrete analogs of functions of finite smoothness in the metric of $L^p$
Matematičeskie zametki, Tome 64 (1998) no. 5, pp. 643-647.

Voir la notice de l'article provenant de la source Math-Net.Ru

For discrete analogs of classes of functions of finite smoothness, we study the quantity $\log\operatorname{Approx}$ characterizing the minimal necessary length of tables that allow us to reconstruct functions from these classes with error not exceeding 1 in the metric of the space $L^p$.
@article{MZM_1998_64_5_a0,
     author = {G. G. Amanzhaev},
     title = {On the complexity of the approximate table representation of discrete analogs of functions of finite smoothness in the metric of $L^p$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {643--647},
     publisher = {mathdoc},
     volume = {64},
     number = {5},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_5_a0/}
}
TY  - JOUR
AU  - G. G. Amanzhaev
TI  - On the complexity of the approximate table representation of discrete analogs of functions of finite smoothness in the metric of $L^p$
JO  - Matematičeskie zametki
PY  - 1998
SP  - 643
EP  - 647
VL  - 64
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_64_5_a0/
LA  - ru
ID  - MZM_1998_64_5_a0
ER  - 
%0 Journal Article
%A G. G. Amanzhaev
%T On the complexity of the approximate table representation of discrete analogs of functions of finite smoothness in the metric of $L^p$
%J Matematičeskie zametki
%D 1998
%P 643-647
%V 64
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_64_5_a0/
%G ru
%F MZM_1998_64_5_a0
G. G. Amanzhaev. On the complexity of the approximate table representation of discrete analogs of functions of finite smoothness in the metric of $L^p$. Matematičeskie zametki, Tome 64 (1998) no. 5, pp. 643-647. http://geodesic.mathdoc.fr/item/MZM_1998_64_5_a0/

[1] Amanzhaev G. G., “O diskretnykh analogakh klassov nepreryvnykh funktsii razlichnoi gladkosti”, Dokl. RAN, 342:2 (1995), 54–58 | MR

[2] Amanzhaev G. G., “O diskretnykh analogakh klassov funktsii, zadavaemykh modulem nepreryvnosti $n$-i proizvodnoi”, Vestn. MGU. Ser. 1. Matem., mekh., 1996, no. 2, 3–8

[3] Amanzhaev G. G., “O diskretnykh analogakh funktsii drobnoi gladkosti”, Vestn. MGU. Ser. 1. Matem., mekh., 1996, no. 4, 3–7 | MR | Zbl

[4] Gelfond A. O., Ischislenie konechnykh raznostei, Nauka, M., 1967

[5] Diskretnaya matematika i matematicheskie voprosy kibernetiki, T. 1, eds. Yablonskii S. V., Lupanov O. B., Nauka, M., 1974