Maslov's complex germ and the asymptotic formula for the Gibbs canonical distribution
Matematičeskie zametki, Tome 64 (1998) no. 4, pp. 622-636.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Gibbs canonical distribution for a system of $N$ classical particles is studied under the following conditions: the external potential is $O(1)$, the potential of pairwise interaction is $O(1/N)$, the potential of triple interaction is $O(1/N^2)$, etc. The asymptotics of free energy and of the partition function as $N\to\infty$ is found. An asymptotic formula approximating the normalized canonical distribution in the $L_1$ norm as $N\to\infty$ is also constructed. It is proved that the chaos property is satisfied for $k$-particle distributions,$k=\mathrm{const}$, and is not satisfied for the $N$-particle distribution.
@article{MZM_1998_64_4_a15,
     author = {O. Yu. Shvedov},
     title = {Maslov's complex germ and the asymptotic formula for the {Gibbs} canonical distribution},
     journal = {Matemati\v{c}eskie zametki},
     pages = {622--636},
     publisher = {mathdoc},
     volume = {64},
     number = {4},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_4_a15/}
}
TY  - JOUR
AU  - O. Yu. Shvedov
TI  - Maslov's complex germ and the asymptotic formula for the Gibbs canonical distribution
JO  - Matematičeskie zametki
PY  - 1998
SP  - 622
EP  - 636
VL  - 64
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_64_4_a15/
LA  - ru
ID  - MZM_1998_64_4_a15
ER  - 
%0 Journal Article
%A O. Yu. Shvedov
%T Maslov's complex germ and the asymptotic formula for the Gibbs canonical distribution
%J Matematičeskie zametki
%D 1998
%P 622-636
%V 64
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_64_4_a15/
%G ru
%F MZM_1998_64_4_a15
O. Yu. Shvedov. Maslov's complex germ and the asymptotic formula for the Gibbs canonical distribution. Matematičeskie zametki, Tome 64 (1998) no. 4, pp. 622-636. http://geodesic.mathdoc.fr/item/MZM_1998_64_4_a15/

[1] Landau L. D., Lifshits E. M., Statisticheskaya fizika, Ch. 1, Nauka, M., 1976

[2] Maslov V. P., Shvedov O. Yu., “An asymptotic formula for the $N$-particle density function as $N\to\infty$ and violation of the chaos hypothesis”, Russian J. Math. Phys., 2:2 (1994), 217–234 | MR | Zbl

[3] Maslov V. P., Kompleksnyi metod VKB v nelineinykh uravneniyakh, Nauka, M., 1977

[4] Kats M., Veroyatnost i smezhnye voprosy v fizike, Nauka, M., 1965 | Zbl

[5] Maslov V. P., Shvedov O. Yu., “Statsionarnye asimptoticheskie resheniya zadachi mnogikh tel i vyvod integralnykh uravnenii s prygayuschei nelineinostyu”, Differents. uravneniya, 31:2 (1995), 312–326 | MR | Zbl

[6] Maslov V. P., “Ob integralnom uravnenii $u(x)=F(x)+\int G(x,\xi)u_+^{k/2}(\xi)\,d\xi\big/ \int u_+^{k/2}(\xi)\,d\xi$”, Funktsion. analiz i ego prilozh., 28:1 (1994), 41–50 | MR | Zbl

[7] Berezin F. A., Metod vtorichnogo kvantovaniya, Nauka, M., 1986 | Zbl

[8] Maslov V. P., Shvedov O. Yu., “The chaos conservation problem in quantum physics”, Russian J. Math. Phys., 4:2 (1996), 173–216 | MR | Zbl

[9] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1989