Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1998_64_4_a15, author = {O. Yu. Shvedov}, title = {Maslov's complex germ and the asymptotic formula for the {Gibbs} canonical distribution}, journal = {Matemati\v{c}eskie zametki}, pages = {622--636}, publisher = {mathdoc}, volume = {64}, number = {4}, year = {1998}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_4_a15/} }
O. Yu. Shvedov. Maslov's complex germ and the asymptotic formula for the Gibbs canonical distribution. Matematičeskie zametki, Tome 64 (1998) no. 4, pp. 622-636. http://geodesic.mathdoc.fr/item/MZM_1998_64_4_a15/
[1] Landau L. D., Lifshits E. M., Statisticheskaya fizika, Ch. 1, Nauka, M., 1976
[2] Maslov V. P., Shvedov O. Yu., “An asymptotic formula for the $N$-particle density function as $N\to\infty$ and violation of the chaos hypothesis”, Russian J. Math. Phys., 2:2 (1994), 217–234 | MR | Zbl
[3] Maslov V. P., Kompleksnyi metod VKB v nelineinykh uravneniyakh, Nauka, M., 1977
[4] Kats M., Veroyatnost i smezhnye voprosy v fizike, Nauka, M., 1965 | Zbl
[5] Maslov V. P., Shvedov O. Yu., “Statsionarnye asimptoticheskie resheniya zadachi mnogikh tel i vyvod integralnykh uravnenii s prygayuschei nelineinostyu”, Differents. uravneniya, 31:2 (1995), 312–326 | MR | Zbl
[6] Maslov V. P., “Ob integralnom uravnenii $u(x)=F(x)+\int G(x,\xi)u_+^{k/2}(\xi)\,d\xi\big/ \int u_+^{k/2}(\xi)\,d\xi$”, Funktsion. analiz i ego prilozh., 28:1 (1994), 41–50 | MR | Zbl
[7] Berezin F. A., Metod vtorichnogo kvantovaniya, Nauka, M., 1986 | Zbl
[8] Maslov V. P., Shvedov O. Yu., “The chaos conservation problem in quantum physics”, Russian J. Math. Phys., 4:2 (1996), 173–216 | MR | Zbl
[9] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1989