Estimation in the Markov-P\'olya scheme
Matematičeskie zametki, Tome 64 (1998) no. 3, pp. 373-382.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Markov-Pólya urn scheme is considered, in which the balls are sequentially and equiprobably drawn from an urn initially containing a given number $a_j$ of balls of the $j$th color, $j=1,\dots,N$, and after each draw the ball is returned into the urn together with $s$ new balls of the same color. It is assumed that at the beginning only the total number of balls in the urn is known and one must estimate its structure $\overline\theta=(\theta_1,\dots,\theta_N)$ by observing the frequencies in $n$ trials of the balls of corresponding colors. Various approaches including the Bayes and minimax ones for estimating $\overline\theta$ under a quadratic loss function are discussed. The connection of the obtained results with known ones for multinomial and multivariate hypergeometric distributions is also discussed.
@article{MZM_1998_64_3_a4,
     author = {G. I. Ivchenko},
     title = {Estimation in the {Markov-P\'olya} scheme},
     journal = {Matemati\v{c}eskie zametki},
     pages = {373--382},
     publisher = {mathdoc},
     volume = {64},
     number = {3},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_3_a4/}
}
TY  - JOUR
AU  - G. I. Ivchenko
TI  - Estimation in the Markov-P\'olya scheme
JO  - Matematičeskie zametki
PY  - 1998
SP  - 373
EP  - 382
VL  - 64
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_64_3_a4/
LA  - ru
ID  - MZM_1998_64_3_a4
ER  - 
%0 Journal Article
%A G. I. Ivchenko
%T Estimation in the Markov-P\'olya scheme
%J Matematičeskie zametki
%D 1998
%P 373-382
%V 64
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_64_3_a4/
%G ru
%F MZM_1998_64_3_a4
G. I. Ivchenko. Estimation in the Markov-P\'olya scheme. Matematičeskie zametki, Tome 64 (1998) no. 3, pp. 373-382. http://geodesic.mathdoc.fr/item/MZM_1998_64_3_a4/

[1] Ivchenko G. I., “Ob urnovoi skheme Markova–Poia: ot 1917 g. do nashikh dnei”, Obozrenie prikladnoi i promyshl. matem. Ser. diskretn. matem., 3:4 (1996), 484–511 | Zbl

[2] Steinhaus H., “The problem of estimation”, Ann. Math. Statist., 28 (1957), 633–648 | DOI | MR | Zbl

[3] Styszynski A., “On minimax estimation of the parameter in the Polya urn scheme”, Zastos. Mat., 18:2 (1984), 225–229 | MR | Zbl

[4] Trybula S., “Some problems of simultaneous minimax estimation”, Ann. Math. Statist., 29 (1958), 245–253 | DOI | MR | Zbl

[5] Trybula S., “Minimax estimation of the parameters of the multivariate hypergeometric distribution”, Zastos. Mat., 18:4 (1985), 559–570 | MR | Zbl

[6] Trybula S., Wilczynski M., “Estimation under sampling from a finite population”, Zastos. Mat., 18:4 (1985), 571–576 | MR | Zbl

[7] Wilczynski M., “Minimax estimation for the multinomial and multivariate hypergeometric distributions”, Sankhyā Ser. A, 47:1 (1985), 128–132 | MR | Zbl

[8] Leman E., Teoriya tochechnogo otsenivaniya, Nauka, M., 1991