Extension by zero of functions of several variables
Matematičeskie zametki, Tome 64 (1998) no. 3, pp. 351-365
Voir la notice de l'article provenant de la source Math-Net.Ru
We obtain sufficient conditions on a domain $G\subset\mathbb R^n$ for functions defined on $G$ to be extendable by zero to the entire space $\mathbb R^n$ with smoothness preserved in an integral norm.
@article{MZM_1998_64_3_a2,
author = {O. V. Besov},
title = {Extension by zero of functions of several variables},
journal = {Matemati\v{c}eskie zametki},
pages = {351--365},
publisher = {mathdoc},
volume = {64},
number = {3},
year = {1998},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_3_a2/}
}
O. V. Besov. Extension by zero of functions of several variables. Matematičeskie zametki, Tome 64 (1998) no. 3, pp. 351-365. http://geodesic.mathdoc.fr/item/MZM_1998_64_3_a2/