Extension by zero of functions of several variables
Matematičeskie zametki, Tome 64 (1998) no. 3, pp. 351-365.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain sufficient conditions on a domain $G\subset\mathbb R^n$ for functions defined on $G$ to be extendable by zero to the entire space $\mathbb R^n$ with smoothness preserved in an integral norm.
@article{MZM_1998_64_3_a2,
     author = {O. V. Besov},
     title = {Extension by zero of functions of several variables},
     journal = {Matemati\v{c}eskie zametki},
     pages = {351--365},
     publisher = {mathdoc},
     volume = {64},
     number = {3},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_3_a2/}
}
TY  - JOUR
AU  - O. V. Besov
TI  - Extension by zero of functions of several variables
JO  - Matematičeskie zametki
PY  - 1998
SP  - 351
EP  - 365
VL  - 64
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_64_3_a2/
LA  - ru
ID  - MZM_1998_64_3_a2
ER  - 
%0 Journal Article
%A O. V. Besov
%T Extension by zero of functions of several variables
%J Matematičeskie zametki
%D 1998
%P 351-365
%V 64
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_64_3_a2/
%G ru
%F MZM_1998_64_3_a2
O. V. Besov. Extension by zero of functions of several variables. Matematičeskie zametki, Tome 64 (1998) no. 3, pp. 351-365. http://geodesic.mathdoc.fr/item/MZM_1998_64_3_a2/

[1] Kuttner B., “Some theorems on fractional derivatives”, Proc. London Math. Soc., 3 (1953), 480–497 | DOI | MR | Zbl

[2] Nikolskii S. M., “Ob odnom svoistve klassov $H_p^{(r)}$”, Ann. Univ. Sci. Budapest. Eötvös Sect. Math., 3–4 (1960/61), 205–216 | MR

[3] Yakovlev G. N., “Granichnye svoistva funktsii klassa $W_p^{(l)}$ na oblastyakh s uglovymi tochkami”, Dokl. AN SSSR, 140:1 (1961), 73–76 | MR | Zbl

[4] Solonnikov V. A., Ob odnom klasse funktsionalnykh prostranstv i ob apriornykh otsenkakh dlya reshenii nekotorykh kraevykh zadach matematicheskoi fiziki, Avtoreferat diss. ... k. f.-m. n., LGU, L., 1961

[5] Kalyabin G. A., “Teoremy o prodolzhenii, multiplikatorakh i diffeomorfizmakh dlya obobschennykh klassov Soboleva–Liuvillya v oblastyakh s lipshitsevoi granitsei”, Tr. MIAN, 172, Nauka, M., 1985, 173–186 | MR | Zbl

[6] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1996

[7] Stein I., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973

[8] Burenkov V. I., “O regulyarizovannom rasstoyanii”, Tr. MIREA. Matem., no. 67, MIREA, M., 1973, 113–117 | MR

[9] Besov O. V., “O prostranstvakh Soboleva–Liuvillya i Lizorkina–Tribelya na oblasti”, Tr. MIAN, 192, Nauka, M., 1990, 20–34 | MR

[10] Netrusov Yu. V., “Spektralnyi sintez v prostranstvakh gladkikh funktsii”, Dokl. RAN, 325:5 (1992), 923–925 | Zbl

[11] Adams D. R., Hedberg L. I., Function Spaces and Potential Theory, Springer, Berlin, 1996

[12] Trotsenko D. A., “Svoistva oblastei s negladkoi granitsei”, Sib. matem. zh., 22:4 (1981), 221–224 | MR | Zbl

[13] Hajłasz P., Koskela P., “Isoperimetric inequalities and imbedding theorems in irregular domains”, J. London Math. Soc. (to appear)

[14] Tribel Kh., Teoriya interpolyatsii, funktsionalnye prostranstva, differentsialnye operatory, Mir, M., 1980

[15] Schmeisser H.-J., Triebel H., Topics in Fourier Analysis and Function Spaces, Geest Portig, Leipzig, 1987 | Zbl