Extension by zero of functions of several variables
Matematičeskie zametki, Tome 64 (1998) no. 3, pp. 351-365

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain sufficient conditions on a domain $G\subset\mathbb R^n$ for functions defined on $G$ to be extendable by zero to the entire space $\mathbb R^n$ with smoothness preserved in an integral norm.
@article{MZM_1998_64_3_a2,
     author = {O. V. Besov},
     title = {Extension by zero of functions of several variables},
     journal = {Matemati\v{c}eskie zametki},
     pages = {351--365},
     publisher = {mathdoc},
     volume = {64},
     number = {3},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_3_a2/}
}
TY  - JOUR
AU  - O. V. Besov
TI  - Extension by zero of functions of several variables
JO  - Matematičeskie zametki
PY  - 1998
SP  - 351
EP  - 365
VL  - 64
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_64_3_a2/
LA  - ru
ID  - MZM_1998_64_3_a2
ER  - 
%0 Journal Article
%A O. V. Besov
%T Extension by zero of functions of several variables
%J Matematičeskie zametki
%D 1998
%P 351-365
%V 64
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_64_3_a2/
%G ru
%F MZM_1998_64_3_a2
O. V. Besov. Extension by zero of functions of several variables. Matematičeskie zametki, Tome 64 (1998) no. 3, pp. 351-365. http://geodesic.mathdoc.fr/item/MZM_1998_64_3_a2/