Problems similar to the additive divisor problem
Matematičeskie zametki, Tome 64 (1998) no. 3, pp. 443-456
Voir la notice de l'article provenant de la source Math-Net.Ru
For multiplicative functions $f(n)$, let the following conditions be satisfied: $f(n)\ge0$, $f(p^r)\le A^r$, $A>0$, and for any $\varepsilon>0$ there exist constants $A_\varepsilon$, $\alpha>0$ such that $f(n)\le A_\varepsilon n^\varepsilon$ and $\sum_{p\le x}f(p)\ln p\ge\alpha x$. For such functions, the following relation is proved:
$$
\sum_{n\le x}f(n)\tau(n-1)=C(f)\sum_{n\le x}f(n)\ln x\bigl(1+o(1)\bigr).
$$
Here $\tau(n)$ is the number of divisors of $n$ and $C(f)$ is a constant.
@article{MZM_1998_64_3_a13,
author = {N. M. Timofeev and S. T. Tulyaganov},
title = {Problems similar to the additive divisor problem},
journal = {Matemati\v{c}eskie zametki},
pages = {443--456},
publisher = {mathdoc},
volume = {64},
number = {3},
year = {1998},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_3_a13/}
}
N. M. Timofeev; S. T. Tulyaganov. Problems similar to the additive divisor problem. Matematičeskie zametki, Tome 64 (1998) no. 3, pp. 443-456. http://geodesic.mathdoc.fr/item/MZM_1998_64_3_a13/