Problems similar to the additive divisor problem
Matematičeskie zametki, Tome 64 (1998) no. 3, pp. 443-456

Voir la notice de l'article provenant de la source Math-Net.Ru

For multiplicative functions $f(n)$, let the following conditions be satisfied: $f(n)\ge0$, $f(p^r)\le A^r$, $A>0$, and for any $\varepsilon>0$ there exist constants $A_\varepsilon$, $\alpha>0$ such that $f(n)\le A_\varepsilon n^\varepsilon$ and $\sum_{p\le x}f(p)\ln p\ge\alpha x$. For such functions, the following relation is proved: $$ \sum_{n\le x}f(n)\tau(n-1)=C(f)\sum_{n\le x}f(n)\ln x\bigl(1+o(1)\bigr). $$ Here $\tau(n)$ is the number of divisors of $n$ and $C(f)$ is a constant.
@article{MZM_1998_64_3_a13,
     author = {N. M. Timofeev and S. T. Tulyaganov},
     title = {Problems similar to the additive divisor problem},
     journal = {Matemati\v{c}eskie zametki},
     pages = {443--456},
     publisher = {mathdoc},
     volume = {64},
     number = {3},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_3_a13/}
}
TY  - JOUR
AU  - N. M. Timofeev
AU  - S. T. Tulyaganov
TI  - Problems similar to the additive divisor problem
JO  - Matematičeskie zametki
PY  - 1998
SP  - 443
EP  - 456
VL  - 64
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_64_3_a13/
LA  - ru
ID  - MZM_1998_64_3_a13
ER  - 
%0 Journal Article
%A N. M. Timofeev
%A S. T. Tulyaganov
%T Problems similar to the additive divisor problem
%J Matematičeskie zametki
%D 1998
%P 443-456
%V 64
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_64_3_a13/
%G ru
%F MZM_1998_64_3_a13
N. M. Timofeev; S. T. Tulyaganov. Problems similar to the additive divisor problem. Matematičeskie zametki, Tome 64 (1998) no. 3, pp. 443-456. http://geodesic.mathdoc.fr/item/MZM_1998_64_3_a13/