Problems similar to the additive divisor problem
Matematičeskie zametki, Tome 64 (1998) no. 3, pp. 443-456.

Voir la notice de l'article provenant de la source Math-Net.Ru

For multiplicative functions $f(n)$, let the following conditions be satisfied: $f(n)\ge0$, $f(p^r)\le A^r$, $A>0$, and for any $\varepsilon>0$ there exist constants $A_\varepsilon$, $\alpha>0$ such that $f(n)\le A_\varepsilon n^\varepsilon$ and $\sum_{p\le x}f(p)\ln p\ge\alpha x$. For such functions, the following relation is proved: $$ \sum_{n\le x}f(n)\tau(n-1)=C(f)\sum_{n\le x}f(n)\ln x\bigl(1+o(1)\bigr). $$ Here $\tau(n)$ is the number of divisors of $n$ and $C(f)$ is a constant.
@article{MZM_1998_64_3_a13,
     author = {N. M. Timofeev and S. T. Tulyaganov},
     title = {Problems similar to the additive divisor problem},
     journal = {Matemati\v{c}eskie zametki},
     pages = {443--456},
     publisher = {mathdoc},
     volume = {64},
     number = {3},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_3_a13/}
}
TY  - JOUR
AU  - N. M. Timofeev
AU  - S. T. Tulyaganov
TI  - Problems similar to the additive divisor problem
JO  - Matematičeskie zametki
PY  - 1998
SP  - 443
EP  - 456
VL  - 64
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_64_3_a13/
LA  - ru
ID  - MZM_1998_64_3_a13
ER  - 
%0 Journal Article
%A N. M. Timofeev
%A S. T. Tulyaganov
%T Problems similar to the additive divisor problem
%J Matematičeskie zametki
%D 1998
%P 443-456
%V 64
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_64_3_a13/
%G ru
%F MZM_1998_64_3_a13
N. M. Timofeev; S. T. Tulyaganov. Problems similar to the additive divisor problem. Matematičeskie zametki, Tome 64 (1998) no. 3, pp. 443-456. http://geodesic.mathdoc.fr/item/MZM_1998_64_3_a13/

[1] Linnik Yu. V., Dispersionnyi metod v binarnykh additivnykh zadachakh, Izd-vo LGU, L., 1961

[2] Vinogradov A. I., “O plotnostnoi gipoteze dlya $L$-ryadov Dirikhle”, Izv. AN SSSR. Ser. matem., 29:4 (1965), 903–934 | MR | Zbl

[3] Ufimtseva L. I., “Obobschenie additivnoi problemy delitelei”, Matem. zametki, 7:4 (1970), 477–482 | Zbl

[4] Bredikhin B. M., Ufimtseva L. I., “Binarnye additivnye zadachi i multiplikativnye funktsii”, Tr. MIAN, 128, Nauka, M., 1972, 66–75 | MR | Zbl

[5] Timofeev N. M., “Analog teoremy Khalosa v sluchae obobscheniya additivnoi problemy delitelei”, Matem. zametki, 48:1 (1990), 116–127 | MR

[6] Khripunova M. B., “Summy multiplikativnykh funktsii so sdvinutymi argumentami”, Matem. zametki, 51:4 (1992), 136–138 | MR | Zbl

[7] Gediri Kh., Asimptotika srednego znacheniya funktsii delitelei po sdvinutym gaussovym chislam, Avtoreferat diss. ... k. f.-m. n., M., 1996

[8] Shiu P., “A Brun–Titchmarsh theorem for multiplicative functions”, J. Reine Angew. Math., 313 (1980), 161–170 | MR | Zbl

[9] Montgomeri G., Multiplikativnaya teoriya chisel, Mir, M., 1974

[10] Voronin S. M., Karatsuba A. A., Dzeta-funktsiya Rimana, Fizmatlit, M., 1994

[11] Levin B. V., Timofeev N. M., “Teorema sravneniya dlya multiplikativnykh funktsii”, Acta Arith., 42 (1982), 21–47 | MR | Zbl

[12] Tulyaganov S. T., “Srednie znacheniya multiplikativnykh funktsii”, Matem. zametki, 49:5 (1991), 117–127 | MR | Zbl

[13] Borevich Z. I., Shafarevich I. R., Teoriya chisel, Nauka, M., 1972