Helmholtz potentiality conditions for systems of difference-differential equations
Matematičeskie zametki, Tome 64 (1998) no. 3, pp. 437-442.

Voir la notice de l'article provenant de la source Math-Net.Ru

For operators corresponding to systems of $\mu$th-order difference-differential equations of neutral type, necessary and sufficient conditions for potentiality with respect to the classical bilinear form are obtained. These results are applied to first-order quasilinear systems.
@article{MZM_1998_64_3_a12,
     author = {A. M. Popov},
     title = {Helmholtz potentiality conditions for systems of difference-differential equations},
     journal = {Matemati\v{c}eskie zametki},
     pages = {437--442},
     publisher = {mathdoc},
     volume = {64},
     number = {3},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_3_a12/}
}
TY  - JOUR
AU  - A. M. Popov
TI  - Helmholtz potentiality conditions for systems of difference-differential equations
JO  - Matematičeskie zametki
PY  - 1998
SP  - 437
EP  - 442
VL  - 64
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_64_3_a12/
LA  - ru
ID  - MZM_1998_64_3_a12
ER  - 
%0 Journal Article
%A A. M. Popov
%T Helmholtz potentiality conditions for systems of difference-differential equations
%J Matematičeskie zametki
%D 1998
%P 437-442
%V 64
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_64_3_a12/
%G ru
%F MZM_1998_64_3_a12
A. M. Popov. Helmholtz potentiality conditions for systems of difference-differential equations. Matematičeskie zametki, Tome 64 (1998) no. 3, pp. 437-442. http://geodesic.mathdoc.fr/item/MZM_1998_64_3_a12/

[1] Helmholtz H., “Über die Physikalische Bedeutung des Prinzips der Kleinsten Wirkung”, J. Reine Andew. Math., 100 (1887), 137–166

[2] Gelmgolts G., “O fizicheskom znachenii printsipa naimenshego deistviya”, Variatsionnye printsipy mekhaniki, ed. L. S. Polak, M., 1959, 430–459

[3] Havas P., “The connection between conservation laws and invariance groups: folklore, fiction, and fact”, Acta Phys. Austriaca, 38:2 (1973), 145–167

[4] Santilli R. M., Foundations of Theoretical Mechanics. The Inverse Probleme in Newtonian Mechanics, New York, Springer, 1978 | Zbl

[5] Obadeanu V., Marinca V., “Le probléme inverse dans la mécanique newtonienne (théorème analytique fondamental)”, Sem. Mech. Univ. Timisoara, 1 (1986), 1–32 | Zbl

[6] Filippov V. M., Savchin V. M., Shorokhov S. G., Variatsionnye printsipy dlya nepotentsialnykh operatorov, Itogi nauki i tekhn. Sovrem. probl. matem. Fundament. napravleniya, 40, VINITI, M., 1992

[7] Filippov V. M., Variatsionnye printsipy dlya nepotentsialnykh operatorov, Izd-vo Un-ta druzhby narodov, M., 1985

[8] Savchin V. M., Matematicheskie metody mekhaniki beskonechnomernykh nepotentsialnykh sistem, Izd-vo Un-ta druzhby narodov, M., 1991

[9] Vainberg M. M., Funktsionalnyi analiz, Prosveschenie, M., 1979 | Zbl

[10] Elsgolts L. E., “Variatsionnye zadachi s zapazdyvayuschim argumentom”, UMN, 12:1 (1957), 57–58 | MR

[11] Kamenskii G. A., “Variatsionnye i kraevye zadachi s otklonyayuschimsya argumentom”, Differents. uravneniya, 6:8 (1970), 1349–1358 | MR | Zbl

[12] Kamenskii G. A., “O variatsionnom metode resheniya kraevykh zadach dlya nekotorykh lineinykh differentsialnykh uravnenii s otklonyayuschimsya argumentom”, Differents. uravneniya, 13:7 (1977), 1185–1191 | MR | Zbl

[13] Kamenskii G. A., Skubachevskii A. L., Ekstremumy funktsionalov s otklonyayuschimisya argumentami, Izd-vo MAI, M., 1979

[14] Kamenskii G. A., Skubachevskii A. L., Lineinye kraevye zadachi dlya differentsialno-raznostnykh uravnenii, Izd-vo MAI, M., 1992 | Zbl