Classification of semispaces according to their types in infinite-dimensional vector spaces
Matematičeskie zametki, Tome 64 (1998) no. 2, pp. 191-198
Voir la notice de l'article provenant de la source Math-Net.Ru
It is shown that each semispace $C\subset X$ naturally generates a relation of complete preorder on $X$ with respect to which the pair $(setminus C,C)$ is a cut of $X$. By identifying the type of the semispace with the type of the cut generated by this semispace, the semispaces are classified according to their types. The obtained classification extends the classification of semispaces in finite-dimensional vector spaces due to Martinez-Legaz and Singer to infinite-dimensional spaces.
@article{MZM_1998_64_2_a3,
author = {V. V. Gorokhovik and E. A. Semenkova},
title = {Classification of semispaces according to their types in infinite-dimensional vector spaces},
journal = {Matemati\v{c}eskie zametki},
pages = {191--198},
publisher = {mathdoc},
volume = {64},
number = {2},
year = {1998},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_2_a3/}
}
TY - JOUR AU - V. V. Gorokhovik AU - E. A. Semenkova TI - Classification of semispaces according to their types in infinite-dimensional vector spaces JO - Matematičeskie zametki PY - 1998 SP - 191 EP - 198 VL - 64 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1998_64_2_a3/ LA - ru ID - MZM_1998_64_2_a3 ER -
V. V. Gorokhovik; E. A. Semenkova. Classification of semispaces according to their types in infinite-dimensional vector spaces. Matematičeskie zametki, Tome 64 (1998) no. 2, pp. 191-198. http://geodesic.mathdoc.fr/item/MZM_1998_64_2_a3/