Criterion for the algebraic independence of values of hypergeometric $E$-functions (even case)
Matematičeskie zametki, Tome 64 (1998) no. 2, pp. 273-284

Voir la notice de l'article provenant de la source Math-Net.Ru

For the hypergeometric function \begin{gather*} \varphi_{\overline\lambda}(z)=\sum_{n=0}^\infty\frac 1{(\lambda_1+1)_n\dotsb(\lambda_t+1)_n}\Bigl(\frac zt\Bigr)^{tn}, \qquad \overline\lambda=(\lambda_1,\dots,\lambda_t), \\ \lambda_j\in\mathbb Q\setminus\{-1,-2,\dots\}, \qquad j=1,\dots,t, \end{gather*} satisfying a linear differential equation of order $t$, for the case of an event prime to 3, a criterion is obtained for the algebraic independence over $\mathbb Q$ of the numbers $\varphi_{\overline\lambda}^{(k)}(\alpha)$, $k=0,1,\dots,t-1$, where $\alpha\in\mathbb A\setminus\{0\}$. The case of odd $t$ was fully investigated in the author's previous papers.
@article{MZM_1998_64_2_a13,
     author = {V. Kh. Salikhov},
     title = {Criterion for the algebraic independence of values of hypergeometric $E$-functions (even case)},
     journal = {Matemati\v{c}eskie zametki},
     pages = {273--284},
     publisher = {mathdoc},
     volume = {64},
     number = {2},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_2_a13/}
}
TY  - JOUR
AU  - V. Kh. Salikhov
TI  - Criterion for the algebraic independence of values of hypergeometric $E$-functions (even case)
JO  - Matematičeskie zametki
PY  - 1998
SP  - 273
EP  - 284
VL  - 64
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_64_2_a13/
LA  - ru
ID  - MZM_1998_64_2_a13
ER  - 
%0 Journal Article
%A V. Kh. Salikhov
%T Criterion for the algebraic independence of values of hypergeometric $E$-functions (even case)
%J Matematičeskie zametki
%D 1998
%P 273-284
%V 64
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_64_2_a13/
%G ru
%F MZM_1998_64_2_a13
V. Kh. Salikhov. Criterion for the algebraic independence of values of hypergeometric $E$-functions (even case). Matematičeskie zametki, Tome 64 (1998) no. 2, pp. 273-284. http://geodesic.mathdoc.fr/item/MZM_1998_64_2_a13/