Criterion for the algebraic independence of values of hypergeometric $E$-functions (even case)
Matematičeskie zametki, Tome 64 (1998) no. 2, pp. 273-284.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the hypergeometric function \begin{gather*} \varphi_{\overline\lambda}(z)=\sum_{n=0}^\infty\frac 1{(\lambda_1+1)_n\dotsb(\lambda_t+1)_n}\Bigl(\frac zt\Bigr)^{tn}, \qquad \overline\lambda=(\lambda_1,\dots,\lambda_t), \\ \lambda_j\in\mathbb Q\setminus\{-1,-2,\dots\}, \qquad j=1,\dots,t, \end{gather*} satisfying a linear differential equation of order $t$, for the case of an event prime to 3, a criterion is obtained for the algebraic independence over $\mathbb Q$ of the numbers $\varphi_{\overline\lambda}^{(k)}(\alpha)$, $k=0,1,\dots,t-1$, where $\alpha\in\mathbb A\setminus\{0\}$. The case of odd $t$ was fully investigated in the author's previous papers.
@article{MZM_1998_64_2_a13,
     author = {V. Kh. Salikhov},
     title = {Criterion for the algebraic independence of values of hypergeometric $E$-functions (even case)},
     journal = {Matemati\v{c}eskie zametki},
     pages = {273--284},
     publisher = {mathdoc},
     volume = {64},
     number = {2},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_2_a13/}
}
TY  - JOUR
AU  - V. Kh. Salikhov
TI  - Criterion for the algebraic independence of values of hypergeometric $E$-functions (even case)
JO  - Matematičeskie zametki
PY  - 1998
SP  - 273
EP  - 284
VL  - 64
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_64_2_a13/
LA  - ru
ID  - MZM_1998_64_2_a13
ER  - 
%0 Journal Article
%A V. Kh. Salikhov
%T Criterion for the algebraic independence of values of hypergeometric $E$-functions (even case)
%J Matematičeskie zametki
%D 1998
%P 273-284
%V 64
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_64_2_a13/
%G ru
%F MZM_1998_64_2_a13
V. Kh. Salikhov. Criterion for the algebraic independence of values of hypergeometric $E$-functions (even case). Matematičeskie zametki, Tome 64 (1998) no. 2, pp. 273-284. http://geodesic.mathdoc.fr/item/MZM_1998_64_2_a13/

[1] Siegel C. L., “Über einige Anwendungen diophantischer Approximationen”, Abh. Preuss. Wiss. Phys.–Math. Kl., 1929–1930, no. 1, 1–70

[2] Shidlovskii A. B., “O kriterii algebraicheskoi nezavisimosti znachenii odnogo klassa tselykh funktsii”, Izv. AN SSSR. Ser. matem., 23 (1959), 35–66 | MR | Zbl

[3] Shidlovskii A. B., Transtsendentnye chisla, Nauka, M., 1987

[4] Salikhov V. Kh., “Kriterii algebraicheskoi nezavisimosti znachenii odnogo klassa gipergeometricheskikh $E$-funktsii”, Matem. sb., 181:2 (1990), 189–211

[5] Salikhov V. Kh., “Kriterii algebraicheskoi nezavisimosti znachenii gipergeometricheskikh $E$-funktsii odnogo klassa (chetnyi sluchai)”, Mezhdunarodnaya konferentsiya “Algebraicheskie, veroyatnostnye, geometricheskie, kombinatornye i funktsionalnye metody v teorii chisel”, Tezisy dokl., VGU, Voronezh, 1995, 134

[6] Salikhov V. Kh., “Neprivodimost gipergeometricheskikh uravnenii i algebraicheskaya nezavisimost znachenii $E$-funktsii”, Acta Arith., 53:5 (1990), 453–471 | MR | Zbl

[7] Nesterenko Yu. V., “Ob algebraicheskoi nezavisimosti znachenii $E$-funktsii, udovletvoryayuschikh lineinym neodnorodnym differentsialnym uravneniyam”, Matem. zametki, 5:5 (1969), 587–598 | MR | Zbl

[8] Cherepnev M. A., Ob algebraicheskoi nezavisimosti znachenii nekotorykh gipergeometricheskikh $E$-funktsii, Diss. ... k. f.-m. n., MGU, M., 1992

[9] Salikhov V. Kh., “Formalnye resheniya lineinykh differentsialnykh uravnenii i ikh primenenie v teorii transtsendentnykh chisel”, Tr. MMO, 51, URSS, M., 1988, 223–256 | Zbl

[10] Kolchin E. R., Differential Algebra and Algebraic Groups, Acad. Press, New York, 1973 | Zbl

[11] Bertrand D., “Un analogue différentiel de la théorie de Kummer”, Approximations Diophantiennes et Nombres Transcendants (Luminy, 1990), ed. P. Philippon, de Gruyter, Berlin, 1992, 39–49 | MR

[12] Beukers F., Brownawell D., Heckman G., “Siegel normality”, Ann. of Math., 127 (1988), 279–308 | DOI | MR | Zbl