Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1998_64_2_a11, author = {M. A. Nazarenko}, title = {Some properties of rational approximations of degree $(k,1)$ in the {Hardy} space $H_2(\mathscr D)$}, journal = {Matemati\v{c}eskie zametki}, pages = {251--259}, publisher = {mathdoc}, volume = {64}, number = {2}, year = {1998}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_2_a11/} }
TY - JOUR AU - M. A. Nazarenko TI - Some properties of rational approximations of degree $(k,1)$ in the Hardy space $H_2(\mathscr D)$ JO - Matematičeskie zametki PY - 1998 SP - 251 EP - 259 VL - 64 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1998_64_2_a11/ LA - ru ID - MZM_1998_64_2_a11 ER -
M. A. Nazarenko. Some properties of rational approximations of degree $(k,1)$ in the Hardy space $H_2(\mathscr D)$. Matematičeskie zametki, Tome 64 (1998) no. 2, pp. 251-259. http://geodesic.mathdoc.fr/item/MZM_1998_64_2_a11/
[1] Uolsh Dzh., Interpolyatsiya i approksimatsiya ratsionalnymi funktsiyami v kompleksnoi oblasti, IL, M., 1961
[2] Erokhin V. D., “O nailuchshem priblizhenii analiticheskikh funktsii posredstvom ratsionalnykh drobei so svobodnymi polyusami”, Dokl. AN SSSR, 128:1 (1959), 29–32 | MR | Zbl
[3] Levin A. L., “Raspolozhenie polyusov ratsionalnykh funktsii nailuchshego priblizheniya i smezhnye voprosy”, Matem. sb., 80:2 (1969), 281–289 | MR
[4] Efimov N. V., Stechkin S. B., “Approksimativnaya kompaktnost i chebyshevskie mnozhestva”, Dokl. AN SSSR, 140:3 (1961), 522–524 | MR | Zbl
[5] Akhlaghi M., Wolfe J. M., “Functions with many best $L_2$-approximations”, J. Approx. Theory, 33:2 (1981), 111–118 | DOI | MR
[6] Cheney E. W., Goldstein A. A., “Mean-square approximation by generalized rational functions”, Math. Z., 95 (1967), 232–241 | DOI | MR | Zbl
[7] Nazarenko M. A., Relations between Rational and Polynomial Approximations in the Banach Spaces, Preprint E5-94-145, OIYaI, Dubna, 1994