Some properties of rational approximations of degree $(k,1)$ in the Hardy space $H_2(\mathscr D)$
Matematičeskie zametki, Tome 64 (1998) no. 2, pp. 251-259.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the well-known interpolation conditions for rational approximations with free poles are not sufficient for finding a rational function of the least deviation. For rational approximations of degree $(k,1)$, we establish that these interpolation conditions are equivalent to the assertion that the interpolation point $c$ is a stationary point of the function $\Omega_k(c)$ defined as the squared deviation of $f$ from the subspace of rational functions with numerator of degree $\leq k$ and with a given pole $1/\overline c$. For any positive integers $k$ and $s$, we construct a function $g\in H_2(\mathscr D)$ such that $R_{k,1}(g)=R_{k+s,1}(g)>0$. where $R_{k,1}(g)$ is the least deviation of $g$ from the class of rational function of degree $\leq (k,1)$.
@article{MZM_1998_64_2_a11,
     author = {M. A. Nazarenko},
     title = {Some properties of rational approximations of degree $(k,1)$ in the {Hardy} space $H_2(\mathscr D)$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {251--259},
     publisher = {mathdoc},
     volume = {64},
     number = {2},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_2_a11/}
}
TY  - JOUR
AU  - M. A. Nazarenko
TI  - Some properties of rational approximations of degree $(k,1)$ in the Hardy space $H_2(\mathscr D)$
JO  - Matematičeskie zametki
PY  - 1998
SP  - 251
EP  - 259
VL  - 64
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_64_2_a11/
LA  - ru
ID  - MZM_1998_64_2_a11
ER  - 
%0 Journal Article
%A M. A. Nazarenko
%T Some properties of rational approximations of degree $(k,1)$ in the Hardy space $H_2(\mathscr D)$
%J Matematičeskie zametki
%D 1998
%P 251-259
%V 64
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_64_2_a11/
%G ru
%F MZM_1998_64_2_a11
M. A. Nazarenko. Some properties of rational approximations of degree $(k,1)$ in the Hardy space $H_2(\mathscr D)$. Matematičeskie zametki, Tome 64 (1998) no. 2, pp. 251-259. http://geodesic.mathdoc.fr/item/MZM_1998_64_2_a11/

[1] Uolsh Dzh., Interpolyatsiya i approksimatsiya ratsionalnymi funktsiyami v kompleksnoi oblasti, IL, M., 1961

[2] Erokhin V. D., “O nailuchshem priblizhenii analiticheskikh funktsii posredstvom ratsionalnykh drobei so svobodnymi polyusami”, Dokl. AN SSSR, 128:1 (1959), 29–32 | MR | Zbl

[3] Levin A. L., “Raspolozhenie polyusov ratsionalnykh funktsii nailuchshego priblizheniya i smezhnye voprosy”, Matem. sb., 80:2 (1969), 281–289 | MR

[4] Efimov N. V., Stechkin S. B., “Approksimativnaya kompaktnost i chebyshevskie mnozhestva”, Dokl. AN SSSR, 140:3 (1961), 522–524 | MR | Zbl

[5] Akhlaghi M., Wolfe J. M., “Functions with many best $L_2$-approximations”, J. Approx. Theory, 33:2 (1981), 111–118 | DOI | MR

[6] Cheney E. W., Goldstein A. A., “Mean-square approximation by generalized rational functions”, Math. Z., 95 (1967), 232–241 | DOI | MR | Zbl

[7] Nazarenko M. A., Relations between Rational and Polynomial Approximations in the Banach Spaces, Preprint E5-94-145, OIYaI, Dubna, 1994