Fourier series of additive vector measures and their term-by-term differentiation
Matematičeskie zametki, Tome 64 (1998) no. 2, pp. 180-184
Cet article a éte moissonné depuis la source Math-Net.Ru
On a measurable space $(T,\Sigma,\mu)$ we choose an additive measure $\nu\colon\Sigma\to Z$ ($Z$ is a Banach space) with the following property: for all $e\in\Sigma$, we have $\int _exd\nu=0\implies x\overset{\mu}{\sim} 0$; this measure defines an indefinite integral over the measure $\nu$ on $L^2(T,\Sigma,\mu)$. We prove that if $\{\tau_n(t)\}_{n=1}^\infty$ is an orthonormal basis in $L^2$ and $\theta _n(e)=\int_e\tau_n(t)d\nu$, then any additive measure $\nu\colon\Sigma\to Z$ whose Radon–Nikodým derivative $d\varphi/d\nu$ belongs to $L^2$ is uniquely expandable in a series $\varphi(e)=\sum_{n=1}^\infty\alpha_n\theta_n(e)$ that converges to $\varphi(e)$ uniformly with respect to $e\in\Sigma$ can be differentiated term-by-term, and satisfies $\sum_{n=1}^\infty\alpha_n^2<\infty$. In the case $L^2[0,2\pi]$, $Z=\mathbb R$, the Fourier series of a $2\pi$-periodic absolutely continuous function $F(t)$ such that $F'(t)\in L^2[0,2\pi]$, is superuniformly convergent to $F(t)$.
@article{MZM_1998_64_2_a1,
author = {A. G. Areshkina},
title = {Fourier series of additive vector measures and their term-by-term differentiation},
journal = {Matemati\v{c}eskie zametki},
pages = {180--184},
year = {1998},
volume = {64},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_2_a1/}
}
A. G. Areshkina. Fourier series of additive vector measures and their term-by-term differentiation. Matematičeskie zametki, Tome 64 (1998) no. 2, pp. 180-184. http://geodesic.mathdoc.fr/item/MZM_1998_64_2_a1/
[1] Areshkina A. G., “Integraly ot skalyarnykh funktsii po vektornoi mere i lineinye operatory”, Matematicheskii analiz. Voprosy teorii, istorii i metodiki prepodavaniya, Mezhvuzovskii sb. nauchn. tr., L., 1988, 37–42 | MR
[2] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1968 | Zbl
[3] Areshkin G. Ya., Yagshimuradov S., “O skhodimosti absolyutno nepreryvnykh funktsii i ikh proizvodnykh”, Izv. vuzov. Matem., 1966, no. 2, 3–8 | MR | Zbl
[4] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1984 | Zbl