Canonically conjugate variables for the Volterra lattice with periodic boundary conditions
Matematičeskie zametki, Tome 64 (1998) no. 1, pp. 115-128.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Volterra lattice is considered. This dynamical system is known to be Hamiltonian with respect to two compatible Poisson brackets (quadratic and cubic). For each of the two brackets, a set of canonically conjugate variables is found by using the spectral theory of the Jacobi operator.
@article{MZM_1998_64_1_a11,
     author = {A. V. Penskoi},
     title = {Canonically conjugate variables for the {Volterra} lattice with periodic boundary conditions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {115--128},
     publisher = {mathdoc},
     volume = {64},
     number = {1},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_1_a11/}
}
TY  - JOUR
AU  - A. V. Penskoi
TI  - Canonically conjugate variables for the Volterra lattice with periodic boundary conditions
JO  - Matematičeskie zametki
PY  - 1998
SP  - 115
EP  - 128
VL  - 64
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_64_1_a11/
LA  - ru
ID  - MZM_1998_64_1_a11
ER  - 
%0 Journal Article
%A A. V. Penskoi
%T Canonically conjugate variables for the Volterra lattice with periodic boundary conditions
%J Matematičeskie zametki
%D 1998
%P 115-128
%V 64
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_64_1_a11/
%G ru
%F MZM_1998_64_1_a11
A. V. Penskoi. Canonically conjugate variables for the Volterra lattice with periodic boundary conditions. Matematičeskie zametki, Tome 64 (1998) no. 1, pp. 115-128. http://geodesic.mathdoc.fr/item/MZM_1998_64_1_a11/

[1] Takhtadzhyan L. A., Faddeev L. D., Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | Zbl

[2] Damianou P. A., “The Volterra model and its relation to the Toda lattice”, Phys. Lett. A, 155:2–3 (1991), 126–132 | DOI | MR

[3] Manakov S. V., “O polnoi integriruemosti i stokhastizatsii v diskretnykh dinamicheskikh sistemakh”, ZhETF, 67:2 (1974), 543–555 | MR

[4] Kac M., van Moerbeke P., “On an explicitly soluble system of nonlinear differential equations related to certain Toda lattices”, Adv. Math., 16 (1975), 160–169 | DOI | MR | Zbl

[5] Flaschka H., McLaughlin D. W., “Canonically conjugate variables for the Korteweg–de Vries equation and the Toda lattice with periodic boundary conditions”, Progr. Theoret. Phys., 55:2 (1976), 438–456 | DOI | MR

[6] Vereschagin V. L., “Spektralnaya teoriya odnofaznykh reshenii tsepochki Volterra”, Matem. zametki, 48:2 (1990), 145–148 | MR | Zbl

[7] Krichever I. M., “Nelineinye uravneniya i ellipticheskie krivye”, Itogi nauki i tekhn. Sovrem. probl. matem., 23, VINITI, M., 1983, 79–136 | MR | Zbl

[8] Dubrovin B. A., Matveev V. B., Novikov S. P., “Nelineinye uravneniya tipa Kortevega–de Friza, konechnozonnye lineinye operatory i abelevy mnogoobraziya”, UMN, 31:1 (1976), 55–136 | MR | Zbl

[9] Veselov A. P., “Integriruemye sistemy s diskretnym vremenem i raznostnye operatory”, Funktsion. analiz i ego prilozh., 22:2 (1988), 1–13 | MR

[10] Magri F., “A simple model of integrable Hamiltonian equation”, J. Math. Phys., 19 (1978), 1156–1162 | DOI | MR | Zbl