Canonically conjugate variables for the Volterra lattice with periodic boundary conditions
Matematičeskie zametki, Tome 64 (1998) no. 1, pp. 115-128
Voir la notice de l'article provenant de la source Math-Net.Ru
The Volterra lattice is considered. This dynamical system is known to be Hamiltonian with respect to two compatible Poisson brackets (quadratic and cubic). For each of the two brackets, a set of canonically conjugate variables is found by using the spectral theory of the Jacobi operator.
@article{MZM_1998_64_1_a11,
author = {A. V. Penskoi},
title = {Canonically conjugate variables for the {Volterra} lattice with periodic boundary conditions},
journal = {Matemati\v{c}eskie zametki},
pages = {115--128},
publisher = {mathdoc},
volume = {64},
number = {1},
year = {1998},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_1_a11/}
}
TY - JOUR AU - A. V. Penskoi TI - Canonically conjugate variables for the Volterra lattice with periodic boundary conditions JO - Matematičeskie zametki PY - 1998 SP - 115 EP - 128 VL - 64 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1998_64_1_a11/ LA - ru ID - MZM_1998_64_1_a11 ER -
A. V. Penskoi. Canonically conjugate variables for the Volterra lattice with periodic boundary conditions. Matematičeskie zametki, Tome 64 (1998) no. 1, pp. 115-128. http://geodesic.mathdoc.fr/item/MZM_1998_64_1_a11/