Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1998_64_1_a11, author = {A. V. Penskoi}, title = {Canonically conjugate variables for the {Volterra} lattice with periodic boundary conditions}, journal = {Matemati\v{c}eskie zametki}, pages = {115--128}, publisher = {mathdoc}, volume = {64}, number = {1}, year = {1998}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_1_a11/} }
TY - JOUR AU - A. V. Penskoi TI - Canonically conjugate variables for the Volterra lattice with periodic boundary conditions JO - Matematičeskie zametki PY - 1998 SP - 115 EP - 128 VL - 64 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1998_64_1_a11/ LA - ru ID - MZM_1998_64_1_a11 ER -
A. V. Penskoi. Canonically conjugate variables for the Volterra lattice with periodic boundary conditions. Matematičeskie zametki, Tome 64 (1998) no. 1, pp. 115-128. http://geodesic.mathdoc.fr/item/MZM_1998_64_1_a11/
[1] Takhtadzhyan L. A., Faddeev L. D., Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | Zbl
[2] Damianou P. A., “The Volterra model and its relation to the Toda lattice”, Phys. Lett. A, 155:2–3 (1991), 126–132 | DOI | MR
[3] Manakov S. V., “O polnoi integriruemosti i stokhastizatsii v diskretnykh dinamicheskikh sistemakh”, ZhETF, 67:2 (1974), 543–555 | MR
[4] Kac M., van Moerbeke P., “On an explicitly soluble system of nonlinear differential equations related to certain Toda lattices”, Adv. Math., 16 (1975), 160–169 | DOI | MR | Zbl
[5] Flaschka H., McLaughlin D. W., “Canonically conjugate variables for the Korteweg–de Vries equation and the Toda lattice with periodic boundary conditions”, Progr. Theoret. Phys., 55:2 (1976), 438–456 | DOI | MR
[6] Vereschagin V. L., “Spektralnaya teoriya odnofaznykh reshenii tsepochki Volterra”, Matem. zametki, 48:2 (1990), 145–148 | MR | Zbl
[7] Krichever I. M., “Nelineinye uravneniya i ellipticheskie krivye”, Itogi nauki i tekhn. Sovrem. probl. matem., 23, VINITI, M., 1983, 79–136 | MR | Zbl
[8] Dubrovin B. A., Matveev V. B., Novikov S. P., “Nelineinye uravneniya tipa Kortevega–de Friza, konechnozonnye lineinye operatory i abelevy mnogoobraziya”, UMN, 31:1 (1976), 55–136 | MR | Zbl
[9] Veselov A. P., “Integriruemye sistemy s diskretnym vremenem i raznostnye operatory”, Funktsion. analiz i ego prilozh., 22:2 (1988), 1–13 | MR
[10] Magri F., “A simple model of integrable Hamiltonian equation”, J. Math. Phys., 19 (1978), 1156–1162 | DOI | MR | Zbl