Canonically conjugate variables for the Volterra lattice with periodic boundary conditions
Matematičeskie zametki, Tome 64 (1998) no. 1, pp. 115-128 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Volterra lattice is considered. This dynamical system is known to be Hamiltonian with respect to two compatible Poisson brackets (quadratic and cubic). For each of the two brackets, a set of canonically conjugate variables is found by using the spectral theory of the Jacobi operator.
@article{MZM_1998_64_1_a11,
     author = {A. V. Penskoi},
     title = {Canonically conjugate variables for the {Volterra} lattice with periodic boundary conditions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {115--128},
     year = {1998},
     volume = {64},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_1_a11/}
}
TY  - JOUR
AU  - A. V. Penskoi
TI  - Canonically conjugate variables for the Volterra lattice with periodic boundary conditions
JO  - Matematičeskie zametki
PY  - 1998
SP  - 115
EP  - 128
VL  - 64
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_64_1_a11/
LA  - ru
ID  - MZM_1998_64_1_a11
ER  - 
%0 Journal Article
%A A. V. Penskoi
%T Canonically conjugate variables for the Volterra lattice with periodic boundary conditions
%J Matematičeskie zametki
%D 1998
%P 115-128
%V 64
%N 1
%U http://geodesic.mathdoc.fr/item/MZM_1998_64_1_a11/
%G ru
%F MZM_1998_64_1_a11
A. V. Penskoi. Canonically conjugate variables for the Volterra lattice with periodic boundary conditions. Matematičeskie zametki, Tome 64 (1998) no. 1, pp. 115-128. http://geodesic.mathdoc.fr/item/MZM_1998_64_1_a11/

[1] Takhtadzhyan L. A., Faddeev L. D., Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | Zbl

[2] Damianou P. A., “The Volterra model and its relation to the Toda lattice”, Phys. Lett. A, 155:2–3 (1991), 126–132 | DOI | MR

[3] Manakov S. V., “O polnoi integriruemosti i stokhastizatsii v diskretnykh dinamicheskikh sistemakh”, ZhETF, 67:2 (1974), 543–555 | MR

[4] Kac M., van Moerbeke P., “On an explicitly soluble system of nonlinear differential equations related to certain Toda lattices”, Adv. Math., 16 (1975), 160–169 | DOI | MR | Zbl

[5] Flaschka H., McLaughlin D. W., “Canonically conjugate variables for the Korteweg–de Vries equation and the Toda lattice with periodic boundary conditions”, Progr. Theoret. Phys., 55:2 (1976), 438–456 | DOI | MR

[6] Vereschagin V. L., “Spektralnaya teoriya odnofaznykh reshenii tsepochki Volterra”, Matem. zametki, 48:2 (1990), 145–148 | MR | Zbl

[7] Krichever I. M., “Nelineinye uravneniya i ellipticheskie krivye”, Itogi nauki i tekhn. Sovrem. probl. matem., 23, VINITI, M., 1983, 79–136 | MR | Zbl

[8] Dubrovin B. A., Matveev V. B., Novikov S. P., “Nelineinye uravneniya tipa Kortevega–de Friza, konechnozonnye lineinye operatory i abelevy mnogoobraziya”, UMN, 31:1 (1976), 55–136 | MR | Zbl

[9] Veselov A. P., “Integriruemye sistemy s diskretnym vremenem i raznostnye operatory”, Funktsion. analiz i ego prilozh., 22:2 (1988), 1–13 | MR

[10] Magri F., “A simple model of integrable Hamiltonian equation”, J. Math. Phys., 19 (1978), 1156–1162 | DOI | MR | Zbl