Canonically conjugate variables for the Volterra lattice with periodic boundary conditions
Matematičeskie zametki, Tome 64 (1998) no. 1, pp. 115-128

Voir la notice de l'article provenant de la source Math-Net.Ru

The Volterra lattice is considered. This dynamical system is known to be Hamiltonian with respect to two compatible Poisson brackets (quadratic and cubic). For each of the two brackets, a set of canonically conjugate variables is found by using the spectral theory of the Jacobi operator.
@article{MZM_1998_64_1_a11,
     author = {A. V. Penskoi},
     title = {Canonically conjugate variables for the {Volterra} lattice with periodic boundary conditions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {115--128},
     publisher = {mathdoc},
     volume = {64},
     number = {1},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_64_1_a11/}
}
TY  - JOUR
AU  - A. V. Penskoi
TI  - Canonically conjugate variables for the Volterra lattice with periodic boundary conditions
JO  - Matematičeskie zametki
PY  - 1998
SP  - 115
EP  - 128
VL  - 64
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_64_1_a11/
LA  - ru
ID  - MZM_1998_64_1_a11
ER  - 
%0 Journal Article
%A A. V. Penskoi
%T Canonically conjugate variables for the Volterra lattice with periodic boundary conditions
%J Matematičeskie zametki
%D 1998
%P 115-128
%V 64
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_64_1_a11/
%G ru
%F MZM_1998_64_1_a11
A. V. Penskoi. Canonically conjugate variables for the Volterra lattice with periodic boundary conditions. Matematičeskie zametki, Tome 64 (1998) no. 1, pp. 115-128. http://geodesic.mathdoc.fr/item/MZM_1998_64_1_a11/