On $p$-adic functions preserving Haar measure
Matematičeskie zametki, Tome 63 (1998) no. 6, pp. 935-950.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\{a_n\}_{n=0}^\infty$ be a uniformly distributed sequence of $p$-adic integers. In the present paper we study continuous functions close to differentiable ones (with respect to the $p$-adic metric); for these functions, either the sequence $\{f(a_n)\}_{n=0}^\infty$ is uniformly distributed over the ring of $p$-adic integers or, for all sufficiently large $k$, the sequences $\{f_k(\varphi_k(a_n))\}_{n=0}^\infty$ are uniformly distributed over the residue class ring $\operatorname{mod}p^k$, where $\varphi_k$ is the canonical epimorphism of the ring of $p$-adic integers to the residue class ring $\operatorname{mod}p^k$ and $f_k$ is the function induced by $f$ on the residue class ring $\operatorname{mod}p^k$ (i.e., $f_k(x)=f(\varphi_k(x))(\operatorname{mod}p^k)$). For instance, these functions can be used to construct generators of pseudorandom numbers.
@article{MZM_1998_63_6_a14,
     author = {I. A. Yurov},
     title = {On $p$-adic functions preserving {Haar} measure},
     journal = {Matemati\v{c}eskie zametki},
     pages = {935--950},
     publisher = {mathdoc},
     volume = {63},
     number = {6},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_6_a14/}
}
TY  - JOUR
AU  - I. A. Yurov
TI  - On $p$-adic functions preserving Haar measure
JO  - Matematičeskie zametki
PY  - 1998
SP  - 935
EP  - 950
VL  - 63
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_63_6_a14/
LA  - ru
ID  - MZM_1998_63_6_a14
ER  - 
%0 Journal Article
%A I. A. Yurov
%T On $p$-adic functions preserving Haar measure
%J Matematičeskie zametki
%D 1998
%P 935-950
%V 63
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_63_6_a14/
%G ru
%F MZM_1998_63_6_a14
I. A. Yurov. On $p$-adic functions preserving Haar measure. Matematičeskie zametki, Tome 63 (1998) no. 6, pp. 935-950. http://geodesic.mathdoc.fr/item/MZM_1998_63_6_a14/

[1] Keipers L., Niderreiter G., Ravnomernoe raspredelenie posledovatelnostei, Nauka, M., 1985

[2] Anashin V. S., “Ravnomerno raspredelennye posledovatelnosti tselykh $p$-adicheskikh chisel”, Matem. zametki, 55:2 (1994), 3–46 | MR | Zbl

[3] Anashin V., Uniformly Distributed Sequences over $p$-adic Integers, Preprint, Russian State University for Humanities, Moscow, 1993

[4] Shafarevich I. R., Osnovy algebraicheskoi geometrii, T. 1, Nauka, M., 1988

[5] Khartskhorn R., Algebraicheskaya geometriya, Mir, M., 1981 | Zbl