Hausdorff measure and capacity associated with Cauchy potentials
Matematičeskie zametki, Tome 63 (1998) no. 6, pp. 923-934.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper the connection between the Hausdorff measure $\Lambda_h(E)$ of sets $E\subset\mathbb C$ and the analytic capacity $\gamma(E)$, and also between $\Lambda_h(E)$ and the capacity $\gamma^+(E)$ generated by Cauchy potentials with nonnegative measures is studied. It is shown that if the integral $\int_0t^{-3}h^2(t)dt$ is divergent and $h$ satisfies the regularity condition, then there exists a plane Cantor set $E$ for which $\Lambda_h(E)>0$, but $\gamma^+(E)=0$. The proof is based on the estimate of $\gamma^+(E_n)$, where $E_n$ is the set appearing at the $n$th step in the construction of a plane Cantor set.
@article{MZM_1998_63_6_a13,
     author = {V. Ya. \`Eiderman},
     title = {Hausdorff measure and capacity associated with {Cauchy} potentials},
     journal = {Matemati\v{c}eskie zametki},
     pages = {923--934},
     publisher = {mathdoc},
     volume = {63},
     number = {6},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_6_a13/}
}
TY  - JOUR
AU  - V. Ya. Èiderman
TI  - Hausdorff measure and capacity associated with Cauchy potentials
JO  - Matematičeskie zametki
PY  - 1998
SP  - 923
EP  - 934
VL  - 63
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_63_6_a13/
LA  - ru
ID  - MZM_1998_63_6_a13
ER  - 
%0 Journal Article
%A V. Ya. Èiderman
%T Hausdorff measure and capacity associated with Cauchy potentials
%J Matematičeskie zametki
%D 1998
%P 923-934
%V 63
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_63_6_a13/
%G ru
%F MZM_1998_63_6_a13
V. Ya. Èiderman. Hausdorff measure and capacity associated with Cauchy potentials. Matematičeskie zametki, Tome 63 (1998) no. 6, pp. 923-934. http://geodesic.mathdoc.fr/item/MZM_1998_63_6_a13/

[1] Garnett J., Analytic Capacity and Measure, Lecture Notes in Math., 297, Springer, Berlin–Heidelberg–New York, 1972 | MR | Zbl

[2] Murai T., A Real Variable Method for the Cauchy Transform, and Analytic Capacity, Lecture Notes in Math., 1307, Springer, Berlin, 1988 | MR | Zbl

[3] Karleson L., Izbrannye problemy teorii isklyuchitelnykh mnozhestv, Mir, M., 1971 | Zbl

[4] Eiderman V. Ya., “O sravnenii mery Khausdorfa i emkosti”, Algebra i analiz, 3:6 (1991), 173–188 | MR

[5] Eiderman V. Ya., “Otsenki potentsialov i $\delta$-subgarmonicheskikh funktsii vne isklyuchitelnykh mnozhestv”, Izv. RAN. Ser. matem., 61:6 (1997), 181–218 | MR | Zbl

[6] Vitushkin A. G., “Primer mnozhestva polozhitelnoi dliny i analiticheskoi emkosti nul”, Dokl. AN SSSR, 127:2 (1959), 246–249 | MR | Zbl

[7] Garnett J., “Positive length but zero analytic capacity”, Proc. Amer. Math. Soc., 24 (1970), 696–699 | DOI | MR | Zbl

[8] Mattila P., “A class of sets with positive length and zero analytic capacity”, Ann. Acad. Sci. Fenn. Ser. A. I Math., 10 (1985), 387–395 | MR | Zbl

[9] Linear and Complex Analysis Problem Book 3, Part 2, Lecture Notes in Math., 1574, eds. Havin V. P., Nikolski N. K., Springer, Berlin, 1994

[10] Mattila P., “On the analytic capacity and curvature of some Cantor sets with non-$\sigma$-finite length”, Publ. Mat., 40:1 (1996), 195–204 | MR | Zbl

[11] Melnikov M. S., “Analiticheskaya emkost: diskretnyi podkhod i krivizna mery”, Matem. sb., 186:6 (1995), 57–76 | MR | Zbl

[12] Christ M., Lectures on Singular Integral Operators, Expository Lectures from the CBMS Regional Conference (University of Montana, Missoula (M.T.), August 28–September 1, 1989), CBMS Regional Conf. Ser. in Math., 77, Amer. Math. Soc., Providence (R.I.), 1990 | MR | Zbl

[13] Eiderman V. Ya., “Analytic capacity of Cantor sets”, Proceedings of the International Conference on Potential Theory (Kouty, Czech Republic, 1994), eds. I. Netuka et al., Walter de Gruyter, Berlin–New York, 1995

[14] Murai T., “Construction of $H^1$ functions concerning the estimate of analytic capacity”, Bull. London Math. Soc., 19 (1987), 154–160 | DOI | MR | Zbl

[15] Melnikov M. S., Verdera J., “A geometric proof of the $L^2$-boundedness of the Cauchy integral on Lipschitz graphs”, Internat. Math. Res. Notices, 1995, no. 7, 325–331 | DOI | Zbl

[16] Mattila P., Melnikov M. S., Verdera J., “The Cauchy integral, analytic capacity, and uniform rectifiability”, Ann. of Math. (2), 144:1 (1996), 127–136 | DOI | MR | Zbl

[17] Tolsa X., Curvature of Measures, Cauchy Singular Integral and Analytic Capacity, Thesis, Departament de Matemàtiques, Universitat Autònoma de Barcelona, Barcelona, 1998