Linearity of metric projections on Chebyshev subspaces in $L_1$ and $C$
Matematičeskie zametki, Tome 63 (1998) no. 6, pp. 812-820.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $Y$ be a Chebyshev subspace of a Banach space $X$. Then the single-valued metric projection operator $P_Y\colon X\to Y$ taking each $x\in X$ to the nearest element $y\in Y$ is well defined. Let $M$ be an arbitrary set, and let be a-finite measure on some $\sigma$-algebra $gS$ of subsets of $M$. We give a complete description of Chebyshev subspaces $Y\in L_1(M,\Sigma,\mu)$ for which the operator $P_Y$ is linear (for the space $L_1[0,1]$, this was done by Morris in 1980). We indicate a wide class of Chebyshev subspaces in $L_1(M,\Sigma,\mu)$, for which the operator $P_Y$ is nonlinear in general. We also prove that the operator $P_Y$, where $Y\subset C[K]$ is a nontrivial Chebyshev subspace and $K$ is a compactum, is linear if and only if the codimension of $Y$ in $C[K]$ is equal to 1.
@article{MZM_1998_63_6_a1,
     author = {P. A. Borodin},
     title = {Linearity of metric projections on {Chebyshev} subspaces in $L_1$ and $C$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {812--820},
     publisher = {mathdoc},
     volume = {63},
     number = {6},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_6_a1/}
}
TY  - JOUR
AU  - P. A. Borodin
TI  - Linearity of metric projections on Chebyshev subspaces in $L_1$ and $C$
JO  - Matematičeskie zametki
PY  - 1998
SP  - 812
EP  - 820
VL  - 63
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_63_6_a1/
LA  - ru
ID  - MZM_1998_63_6_a1
ER  - 
%0 Journal Article
%A P. A. Borodin
%T Linearity of metric projections on Chebyshev subspaces in $L_1$ and $C$
%J Matematičeskie zametki
%D 1998
%P 812-820
%V 63
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_63_6_a1/
%G ru
%F MZM_1998_63_6_a1
P. A. Borodin. Linearity of metric projections on Chebyshev subspaces in $L_1$ and $C$. Matematičeskie zametki, Tome 63 (1998) no. 6, pp. 812-820. http://geodesic.mathdoc.fr/item/MZM_1998_63_6_a1/

[1] Singer I., Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces, Publ. House Acad. R. S. România, Bucharest, 1970 | Zbl

[2] Cheney E. W., Wulbert D. E., “The existence and unicity of best approximations”, Math. Scand., 24:1 (1969), 113–140 | MR | Zbl

[3] Morris P. D., “Chebyshev subspaces of $L^1$ with linear metric projection”, J. Approx. Theory, 29:3 (1980), 231–234 | DOI | MR | Zbl

[4] Danford N., Shvarts Dzh., Lineinye operatory. Obschaya teoriya, M., 1962

[5] Garkavi A. L., “Teoriya nailuchshego priblizheniya v lineinykh normirovannykh prostranstvakh”, Itogi nauki. Matematicheskii analiz, VINITI, M., 1969, 75–132

[6] Phelps R. R., “C̆ebyshev subspaces of finite dimension in $L_1$”, Proc. Amer. Math. Soc., 17:3 (1966), 646–652 | DOI | MR | Zbl

[7] Garkavi A. L., “Kharakteristika chebyshevskikh podprostranstv konechnoi korazmernosti v $L_1$”, Matem. zametki, 7:2 (1970), 155–163 | MR | Zbl

[8] Phelps R. R., “Uniqueness of Hahn–Banach extensions and unique best approximation”, Trans. Amer. Math. Soc., 95:2 (1960), 238–255 | DOI | MR | Zbl

[9] Aleksandrov P. S., Vvedenie v teoriyu mnozhestv i obschuyu topologiyu, Nauka, M., 1977