Use of complex analysis for deriving lower bounds for trigonometric polynomials
Matematičeskie zametki, Tome 63 (1998) no. 6, pp. 803-811
Voir la notice de l'article provenant de la source Math-Net.Ru
It is shown that for any distinct natural numbers $k_1,\dots,k_n$ and arbitrary real numbers $a_1,\dots,a_n$ the following inequality holds:
$$
-\min_x\sum_{j=1}^na_j\bigl(\cos(k_jx)-\sin(k_jx)\bigr)
\ge B\biggl(\frac 1{1+\ln n}\sum_{j=1}^na_j^2\biggr)^{1/2},
\qquad n\in\mathbb N,
$$
where $B$ is a positive absolute constant (for example, $B=1/8$). An example shows that in this inequality the order with respect ton, i.e., the factor $(1+\ln n)^{-1/2}$, cannot be improved. A more elegant analog of Pichorides' inequality and some other lower bounds for trigonometric sums have been obtained.
@article{MZM_1998_63_6_a0,
author = {A. S. Belov},
title = {Use of complex analysis for deriving lower bounds for trigonometric polynomials},
journal = {Matemati\v{c}eskie zametki},
pages = {803--811},
publisher = {mathdoc},
volume = {63},
number = {6},
year = {1998},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_6_a0/}
}
A. S. Belov. Use of complex analysis for deriving lower bounds for trigonometric polynomials. Matematičeskie zametki, Tome 63 (1998) no. 6, pp. 803-811. http://geodesic.mathdoc.fr/item/MZM_1998_63_6_a0/