Use of complex analysis for deriving lower bounds for trigonometric polynomials
Matematičeskie zametki, Tome 63 (1998) no. 6, pp. 803-811
Cet article a éte moissonné depuis la source Math-Net.Ru
It is shown that for any distinct natural numbers $k_1,\dots,k_n$ and arbitrary real numbers $a_1,\dots,a_n$ the following inequality holds: $$ -\min_x\sum_{j=1}^na_j\bigl(\cos(k_jx)-\sin(k_jx)\bigr) \ge B\biggl(\frac 1{1+\ln n}\sum_{j=1}^na_j^2\biggr)^{1/2}, \qquad n\in\mathbb N, $$ where $B$ is a positive absolute constant (for example, $B=1/8$). An example shows that in this inequality the order with respect ton, i.e., the factor $(1+\ln n)^{-1/2}$, cannot be improved. A more elegant analog of Pichorides' inequality and some other lower bounds for trigonometric sums have been obtained.
@article{MZM_1998_63_6_a0,
author = {A. S. Belov},
title = {Use of complex analysis for deriving lower bounds for trigonometric polynomials},
journal = {Matemati\v{c}eskie zametki},
pages = {803--811},
year = {1998},
volume = {63},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_6_a0/}
}
A. S. Belov. Use of complex analysis for deriving lower bounds for trigonometric polynomials. Matematičeskie zametki, Tome 63 (1998) no. 6, pp. 803-811. http://geodesic.mathdoc.fr/item/MZM_1998_63_6_a0/
[1] Pichorides S. K., “A remark on exponential sums”, Bull. Amer. Math. Soc., 83 (1977), 283–285 | DOI | MR | Zbl
[2] Zigmund A., Trigonometricheskie ryady, T. 1, 2, Mir, M., 1965
[3] Bari N. K., Trigonometricheskie ryady, Fizmatgiz, M., 1961
[4] Kusis P., Vvedenie v teoriyu prostranstv $H^p$, Mir, M., 1984
[5] Konyagin S. V., “Ob odnoi zadache Litlvuda”, Matem. zametki, 49:2 (1991), 143–144 | MR | Zbl
[6] Pichugov S. A., “Otsenki minimuma trigonometricheskikh summ”, Issledovaniya po sovremennym problemam summirovaniya i priblizheniya funktsii i ikh prilozheniyam, Sb. nauchn. tr., DGU, Dnepropetrovsk, 1982, 35–38