Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1998_63_5_a15, author = {I. D. Chueshov}, title = {A remark on sets of determining elements for reaction-diffusion systems}, journal = {Matemati\v{c}eskie zametki}, pages = {774--784}, publisher = {mathdoc}, volume = {63}, number = {5}, year = {1998}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_5_a15/} }
I. D. Chueshov. A remark on sets of determining elements for reaction-diffusion systems. Matematičeskie zametki, Tome 63 (1998) no. 5, pp. 774-784. http://geodesic.mathdoc.fr/item/MZM_1998_63_5_a15/
[1] Babin A. V., Vishik M. I., Attraktory evolyutsionnykh uravnenii, Nauka, M., 1989 | Zbl
[2] Temam R., Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer, New York, 1988 | Zbl
[3] Ladyzhenskaya O. A., “O nakhozhdenii minimalnykh globalnykh attraktorov dlya uravneniya Nave–Stoksa i drugikh uravnenii s chastnymi proizvodnymi”, UMN, 42:6 (1987), 25–60 | MR | Zbl
[4] Chueshov I. D., “Globalnye attraktory v nelineinykh zadachakh matematicheskoi fiziki”, UMN, 48:3 (1993), 135–162 | MR | Zbl
[5] Chepyzhov V. V., Vishik M. I., “Attractors of non-autonomous dynamical systems and their dimension”, J. Math. Pures Appl. (9), 73 (1994), 279–333 | MR | Zbl
[6] Foias C., Prodi G., “Sur le comportement global des solutions non-stationnaires des équations de Navier-Stokes en dimension 2”, Rend. Sem. Mat. Univ. Padova, 39 (1967), 1–34 | MR | Zbl
[7] Ladyzhenskaya O. A., “O dinamicheskoi sisteme, porozhdaemoi uravneniyami Nave–Stoksa”, Zapiski nauch. sem. LOMI, 27, Nauka, L., 1972, 91–115 | MR | Zbl
[8] Ladyzhenskaya O. A., “Ob otsenkakh fraktalnoi razmernosti i chisla opredelyayuschikh mod dlya invariantnykh mnozhestv dinamicheskikh sistem”, Zapiski nauch. sem. LOMI, 163, Nauka, L., 1987, 105–129 | Zbl
[9] Foias C., Kukavica I., “Determining nodes for the Kuramoto–Sivashinsky equation”, J. Dynam. Differential Equations, 7 (1995), 365–373 | DOI | MR | Zbl
[10] Jones D. A., Titi E. S., “Upper bounds on the number of determining modes, nodes and volume elements for the Navier–Stokes equations”, Indiana Univ. Math. J., 42 (1993), 875–887 | DOI | MR | Zbl
[11] Foias C., Manley O. P., Temam R., Treve Y. M., “Asymptotic analysis of the Navier–Stokes equations”, Phys. D, 9 (1983), 157–188 | DOI | MR | Zbl
[12] Foias C., Temam R., “Determination of solutions of the Navier-Stokes equations by a set of nodal values”, Math. Comp., 43 (1984), 117–133 | DOI | MR | Zbl
[13] Foias C., Titi E. S., “Determining nodes, finite difference schemes and inertial manifolds”, Nonlinearity, 4 (1991), 135–153 | DOI | MR | Zbl
[14] Jones D. A., Titi E. S., “Determination of the solutions of the Navier–Stokes equations by finite volume elements”, Phys. D, 60 (1992), 165–174 | DOI | MR | Zbl
[15] Cockburn B., Jones D. A., Titi E. S., “Determining degrees of freedom for nonlinear dissipative systems”, C. R. Acad. Sci. Paris. Sér. I. Math., 321 (1995), 563–568 | MR | Zbl
[16] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967
[17] Aubin J.-P., Approximation of Elliptic Boundary-Value Problems, Wiley, New York, 1972 | Zbl
[18] Ciarlet P., The Finite Elements Method for Elliptic Problems, North-Holland, Amsterdam, 1978 | Zbl
[19] Smoller J., Shock Waves and Reaction-Diffusion Equations, Springer, New York, 1983 | Zbl
[20] Ladyzhenskaya O. A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970
[21] Constantin P., Foias C., Navier–Stokes Equations, Univ. of Chicago, Chicago, 1988