A remark on sets of determining elements for reaction-diffusion systems
Matematičeskie zametki, Tome 63 (1998) no. 5, pp. 774-784.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a class of systems of parabolic equations, conditions represented by a finite set of linear functionals on the phase space that uniquely determine the long-time behavior of solutions are found. The cases in which it is sufficient to define these determining functionals only on a part of the components of the state vector are singled out. As examples, systems describing the Belousov–Zhabotinsky reaction and the two-dimensional Navier–Stokes equations are considered.
@article{MZM_1998_63_5_a15,
     author = {I. D. Chueshov},
     title = {A remark on sets of determining elements for reaction-diffusion systems},
     journal = {Matemati\v{c}eskie zametki},
     pages = {774--784},
     publisher = {mathdoc},
     volume = {63},
     number = {5},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_5_a15/}
}
TY  - JOUR
AU  - I. D. Chueshov
TI  - A remark on sets of determining elements for reaction-diffusion systems
JO  - Matematičeskie zametki
PY  - 1998
SP  - 774
EP  - 784
VL  - 63
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_63_5_a15/
LA  - ru
ID  - MZM_1998_63_5_a15
ER  - 
%0 Journal Article
%A I. D. Chueshov
%T A remark on sets of determining elements for reaction-diffusion systems
%J Matematičeskie zametki
%D 1998
%P 774-784
%V 63
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_63_5_a15/
%G ru
%F MZM_1998_63_5_a15
I. D. Chueshov. A remark on sets of determining elements for reaction-diffusion systems. Matematičeskie zametki, Tome 63 (1998) no. 5, pp. 774-784. http://geodesic.mathdoc.fr/item/MZM_1998_63_5_a15/

[1] Babin A. V., Vishik M. I., Attraktory evolyutsionnykh uravnenii, Nauka, M., 1989 | Zbl

[2] Temam R., Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer, New York, 1988 | Zbl

[3] Ladyzhenskaya O. A., “O nakhozhdenii minimalnykh globalnykh attraktorov dlya uravneniya Nave–Stoksa i drugikh uravnenii s chastnymi proizvodnymi”, UMN, 42:6 (1987), 25–60 | MR | Zbl

[4] Chueshov I. D., “Globalnye attraktory v nelineinykh zadachakh matematicheskoi fiziki”, UMN, 48:3 (1993), 135–162 | MR | Zbl

[5] Chepyzhov V. V., Vishik M. I., “Attractors of non-autonomous dynamical systems and their dimension”, J. Math. Pures Appl. (9), 73 (1994), 279–333 | MR | Zbl

[6] Foias C., Prodi G., “Sur le comportement global des solutions non-stationnaires des équations de Navier-Stokes en dimension 2”, Rend. Sem. Mat. Univ. Padova, 39 (1967), 1–34 | MR | Zbl

[7] Ladyzhenskaya O. A., “O dinamicheskoi sisteme, porozhdaemoi uravneniyami Nave–Stoksa”, Zapiski nauch. sem. LOMI, 27, Nauka, L., 1972, 91–115 | MR | Zbl

[8] Ladyzhenskaya O. A., “Ob otsenkakh fraktalnoi razmernosti i chisla opredelyayuschikh mod dlya invariantnykh mnozhestv dinamicheskikh sistem”, Zapiski nauch. sem. LOMI, 163, Nauka, L., 1987, 105–129 | Zbl

[9] Foias C., Kukavica I., “Determining nodes for the Kuramoto–Sivashinsky equation”, J. Dynam. Differential Equations, 7 (1995), 365–373 | DOI | MR | Zbl

[10] Jones D. A., Titi E. S., “Upper bounds on the number of determining modes, nodes and volume elements for the Navier–Stokes equations”, Indiana Univ. Math. J., 42 (1993), 875–887 | DOI | MR | Zbl

[11] Foias C., Manley O. P., Temam R., Treve Y. M., “Asymptotic analysis of the Navier–Stokes equations”, Phys. D, 9 (1983), 157–188 | DOI | MR | Zbl

[12] Foias C., Temam R., “Determination of solutions of the Navier-Stokes equations by a set of nodal values”, Math. Comp., 43 (1984), 117–133 | DOI | MR | Zbl

[13] Foias C., Titi E. S., “Determining nodes, finite difference schemes and inertial manifolds”, Nonlinearity, 4 (1991), 135–153 | DOI | MR | Zbl

[14] Jones D. A., Titi E. S., “Determination of the solutions of the Navier–Stokes equations by finite volume elements”, Phys. D, 60 (1992), 165–174 | DOI | MR | Zbl

[15] Cockburn B., Jones D. A., Titi E. S., “Determining degrees of freedom for nonlinear dissipative systems”, C. R. Acad. Sci. Paris. Sér. I. Math., 321 (1995), 563–568 | MR | Zbl

[16] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967

[17] Aubin J.-P., Approximation of Elliptic Boundary-Value Problems, Wiley, New York, 1972 | Zbl

[18] Ciarlet P., The Finite Elements Method for Elliptic Problems, North-Holland, Amsterdam, 1978 | Zbl

[19] Smoller J., Shock Waves and Reaction-Diffusion Equations, Springer, New York, 1983 | Zbl

[20] Ladyzhenskaya O. A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970

[21] Constantin P., Foias C., Navier–Stokes Equations, Univ. of Chicago, Chicago, 1988