Additive problems for integers with a given number of prime divisors
Matematičeskie zametki, Tome 63 (1998) no. 5, pp. 749-762.

Voir la notice de l'article provenant de la source Math-Net.Ru

The asymptotics of sums of the form $\sum_{\substack n$ (summation over $n$, $\omega(n)=k$) is studied, where $\omega(n)$ is the number of distinct prime divisors of $n$, and $\tau(n)$ is the number of all divisors.
@article{MZM_1998_63_5_a13,
     author = {M. B. Khripunova},
     title = {Additive problems for integers with a given number of prime divisors},
     journal = {Matemati\v{c}eskie zametki},
     pages = {749--762},
     publisher = {mathdoc},
     volume = {63},
     number = {5},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_5_a13/}
}
TY  - JOUR
AU  - M. B. Khripunova
TI  - Additive problems for integers with a given number of prime divisors
JO  - Matematičeskie zametki
PY  - 1998
SP  - 749
EP  - 762
VL  - 63
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_63_5_a13/
LA  - ru
ID  - MZM_1998_63_5_a13
ER  - 
%0 Journal Article
%A M. B. Khripunova
%T Additive problems for integers with a given number of prime divisors
%J Matematičeskie zametki
%D 1998
%P 749-762
%V 63
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_63_5_a13/
%G ru
%F MZM_1998_63_5_a13
M. B. Khripunova. Additive problems for integers with a given number of prime divisors. Matematičeskie zametki, Tome 63 (1998) no. 5, pp. 749-762. http://geodesic.mathdoc.fr/item/MZM_1998_63_5_a13/

[1] Titchmarsh E. C., “A divisor problem”, Rend. Circ. Mat. Palermo, 54 (1930), 414–429 | DOI

[2] Linnik Yu. V., Dispersionnyi metod v binarnykh additivnykh zadachakh, Izd-vo LGU, L., 1961

[3] Bredikhin B. M., “Binarnye additivnye problemy neopredelennogo tipa, I”, Izv. AN SSSR. Ser. matem., 27:2 (1963), 439–462 | MR | Zbl

[4] Barban M. B., “Ob analogakh problemy delitelei Titchmarsha”, Vestn. LGU. Matem., mekh., astron., 19 (1963), 5–13 | MR | Zbl

[5] Karshnev A. K., “Obobschenie problemy delitelei Titchmarsha”, Izv. AN UzSSR. Ser. fiz.-mat. nauk, 13:1 (1969), 69–70 | MR

[6] Piyadina Zh. V., “Additivnye zadachi s pochti prostymi chislami”, Vsesoyuznaya shkola “Konstruktivnye metody i algoritmy teorii chisel”, Tezisy dokl., Minsk, 1989

[7] Fujii A., “On some analogues of Titchmarsh divisor problem”, Nagoya Math. J., 64 (1976), 149–158 | MR | Zbl

[8] Timofeev N. M., Khripunova M. B., “Raspredelenie chisel s zadannym chislom prostykh delitelei v progressiyakh”, Matem. zametki, 55:2 (1994), 144–156 | MR | Zbl

[9] Timofeev N. M., Khripunova M. B., “Problema Titchmarsha s chislami, imeyuschimi zadannoe chislo prostykh delitelei”, Matem. zametki, 59:4 (1996), 586–603 | MR | Zbl

[10] Selberg A., “Note on a paper by L. G. Sathe”, J. Indian Math. Soc. (N.S.), 18 (1954), 83–87 | MR | Zbl

[11] Sathe L. G., “On a problem of Hardy on the distribution of integers having a given member of prime factors”, J. Indian Math. Soc. (N.S.), 17 (1953), 63–141 ; 18 (1954), 27–81 | MR | MR

[12] Nicolas J.-L., “Sur la distribution des nombres entiers ayant une quantité fixée de facteurs premiers”, Acta Arith., 44 (1984), 191–200 | MR | Zbl

[13] Hildebrand A., Tenenbaum G., “On the number of prime factors of an integer”, Duke Math. J., 56 (1988), 471–501 | DOI | MR | Zbl

[14] Balazard M., “Unimodalité de la distribution du nombre de diviseurs premiers d'un entier”, Ann. Inst. Fourier (Grenoble), 40:2 (1990), 255–270 | MR | Zbl

[15] Alladi K., “The distribution of $\nu(n)$ in the sieve of Eratosthenes”, Quart. J. Math. Oxford. Ser. (2), 33 (1982), 129–148 | DOI | MR | Zbl

[16] Shiu P., “A Brun–Titchmarsh theorem for multiplicative functions”, J. Reine Angew. Math., 313 (1980), 161–170 | MR | Zbl

[17] Halberstam H., Richert H.-E., Sieve Methods, Acad. Press, London–New York, 1974 | Zbl

[18] Vinogradov I. M., Metod trigonometricheskikh summ v teorii chisel, Nauka, M., 1971

[19] Prakhar I. M., Raspredelenie prostykh chisel, Mir, M., 1967