Improved lower bounds on the rigidity of Hadamard matrices
Matematičeskie zametki, Tome 63 (1998) no. 4, pp. 535-540
Voir la notice de l'article provenant de la source Math-Net.Ru
We write$f=\Omega(g)$ if $f(x)\ge cg(x)$ with some positive constant $c$ for all $x$ from the domain of functions $f$ and $g$. We show that at least $\Omega(n^2/r)$ entries must be changed in an arbitrary (generalized) Hadamard matrix in order to reduce its rank below $r$. This improves the previously known bound $\Omega(n^2/r^2)$. If we additionally know that the changes are bounded above in absolute value by some number $\theta\ge n/r$, then the number of these entries is bounded below by $\Omega(n^3/(r\theta^2))$, which improves upon the previously known bound $\Omega(n^2/\theta^2)$.
@article{MZM_1998_63_4_a6,
author = {B. S. Kashin and A. A. Razborov},
title = {Improved lower bounds on the rigidity of {Hadamard} matrices},
journal = {Matemati\v{c}eskie zametki},
pages = {535--540},
publisher = {mathdoc},
volume = {63},
number = {4},
year = {1998},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_4_a6/}
}
B. S. Kashin; A. A. Razborov. Improved lower bounds on the rigidity of Hadamard matrices. Matematičeskie zametki, Tome 63 (1998) no. 4, pp. 535-540. http://geodesic.mathdoc.fr/item/MZM_1998_63_4_a6/