Sequences of maximal terms and central exponents of derivatives of Dirichlet series
Matematičeskie zametki, Tome 63 (1998) no. 3, pp. 457-467.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the Dirichlet series corresponding to a function $F$ with positive exponents increasing to $\infty$ and with abscissa of absolute convergence $A\in(-\infty,+\infty]$, it is proved that the sequences $\bigl(\mu(\sigma,F^{(m)})\bigr)$ of maximal terms and $\bigl(\Lambda(\sigma,F^{(m)})\bigr)$ of central exponents are nondecreasing to $\infty$ as $m\to\infty$ for any given $\sigma$, and $$ \varlimsup_{m\to\infty}\frac{\ln\mu(\sigma,F^{(m)})}{m\ln m}\le1 \quad\text{and}\quad \varlimsup_{m\to\infty}\frac{\ln\Lambda(\sigma,F^{(m)})}{\ln m}\le1. $$ Necessary and sufficient conditions for putting the equality sign and replacing $\varlimsup$ by $\lim$ in these relations are given.
@article{MZM_1998_63_3_a17,
     author = {M. N. Sheremeta},
     title = {Sequences of maximal terms and central exponents of derivatives of {Dirichlet} series},
     journal = {Matemati\v{c}eskie zametki},
     pages = {457--467},
     publisher = {mathdoc},
     volume = {63},
     number = {3},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_3_a17/}
}
TY  - JOUR
AU  - M. N. Sheremeta
TI  - Sequences of maximal terms and central exponents of derivatives of Dirichlet series
JO  - Matematičeskie zametki
PY  - 1998
SP  - 457
EP  - 467
VL  - 63
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_63_3_a17/
LA  - ru
ID  - MZM_1998_63_3_a17
ER  - 
%0 Journal Article
%A M. N. Sheremeta
%T Sequences of maximal terms and central exponents of derivatives of Dirichlet series
%J Matematičeskie zametki
%D 1998
%P 457-467
%V 63
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_63_3_a17/
%G ru
%F MZM_1998_63_3_a17
M. N. Sheremeta. Sequences of maximal terms and central exponents of derivatives of Dirichlet series. Matematičeskie zametki, Tome 63 (1998) no. 3, pp. 457-467. http://geodesic.mathdoc.fr/item/MZM_1998_63_3_a17/

[1] Sheremeta M. N., “Dvuchlennaya asimptotika tselykh ryadov Dirikhle”, Teor. funktsii, funktsion. analiz i ikh prilozh., 54 (1990), 16–25

[2] Bratischev A. V., “Ob obraschenii pravila Lopitalya”, Mekhanika sploshnoi sredy, Izd-vo RGU, Rostov-na-Donu, 1985, 28–42

[3] Sheremeta M. N., “O sootnosheniyakh mezhdu maksimalnym chlenom i maksimumom modulya tselogo ryada Dirikhle”, Matem. zametki, 51:5 (1992), 141–148 | MR | Zbl