Sequences of maximal terms and central exponents of derivatives of Dirichlet series
Matematičeskie zametki, Tome 63 (1998) no. 3, pp. 457-467
Cet article a éte moissonné depuis la source Math-Net.Ru
For the Dirichlet series corresponding to a function $F$ with positive exponents increasing to $\infty$ and with abscissa of absolute convergence $A\in(-\infty,+\infty]$, it is proved that the sequences $\bigl(\mu(\sigma,F^{(m)})\bigr)$ of maximal terms and $\bigl(\Lambda(\sigma,F^{(m)})\bigr)$ of central exponents are nondecreasing to $\infty$ as $m\to\infty$ for any given $\sigma, and $$ \varlimsup_{m\to\infty}\frac{\ln\mu(\sigma,F^{(m)})}{m\ln m}\le1 \quad\text{and}\quad \varlimsup_{m\to\infty}\frac{\ln\Lambda(\sigma,F^{(m)})}{\ln m}\le1. $$ Necessary and sufficient conditions for putting the equality sign and replacing $\varlimsup$ by $\lim$ in these relations are given.
@article{MZM_1998_63_3_a17,
author = {M. N. Sheremeta},
title = {Sequences of maximal terms and central exponents of derivatives of {Dirichlet} series},
journal = {Matemati\v{c}eskie zametki},
pages = {457--467},
year = {1998},
volume = {63},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_3_a17/}
}
M. N. Sheremeta. Sequences of maximal terms and central exponents of derivatives of Dirichlet series. Matematičeskie zametki, Tome 63 (1998) no. 3, pp. 457-467. http://geodesic.mathdoc.fr/item/MZM_1998_63_3_a17/
[1] Sheremeta M. N., “Dvuchlennaya asimptotika tselykh ryadov Dirikhle”, Teor. funktsii, funktsion. analiz i ikh prilozh., 54 (1990), 16–25
[2] Bratischev A. V., “Ob obraschenii pravila Lopitalya”, Mekhanika sploshnoi sredy, Izd-vo RGU, Rostov-na-Donu, 1985, 28–42
[3] Sheremeta M. N., “O sootnosheniyakh mezhdu maksimalnym chlenom i maksimumom modulya tselogo ryada Dirikhle”, Matem. zametki, 51:5 (1992), 141–148 | MR | Zbl