Sequences of maximal terms and central exponents of derivatives of Dirichlet series
Matematičeskie zametki, Tome 63 (1998) no. 3, pp. 457-467
Voir la notice de l'article provenant de la source Math-Net.Ru
For the Dirichlet series corresponding to a function $F$ with positive exponents increasing to $\infty$ and with abscissa of absolute convergence $A\in(-\infty,+\infty]$, it is proved that the sequences $\bigl(\mu(\sigma,F^{(m)})\bigr)$ of maximal terms and $\bigl(\Lambda(\sigma,F^{(m)})\bigr)$ of central exponents are nondecreasing to $\infty$ as $m\to\infty$ for any given $\sigma$, and
$$
\varlimsup_{m\to\infty}\frac{\ln\mu(\sigma,F^{(m)})}{m\ln m}\le1
\quad\text{and}\quad
\varlimsup_{m\to\infty}\frac{\ln\Lambda(\sigma,F^{(m)})}{\ln m}\le1.
$$
Necessary and sufficient conditions for putting the equality sign and replacing $\varlimsup$ by $\lim$ in these relations are given.
@article{MZM_1998_63_3_a17,
author = {M. N. Sheremeta},
title = {Sequences of maximal terms and central exponents of derivatives of {Dirichlet} series},
journal = {Matemati\v{c}eskie zametki},
pages = {457--467},
publisher = {mathdoc},
volume = {63},
number = {3},
year = {1998},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_3_a17/}
}
M. N. Sheremeta. Sequences of maximal terms and central exponents of derivatives of Dirichlet series. Matematičeskie zametki, Tome 63 (1998) no. 3, pp. 457-467. http://geodesic.mathdoc.fr/item/MZM_1998_63_3_a17/