Further criteria for the indecomposability of finite pseudometric spaces
Matematičeskie zametki, Tome 63 (1998) no. 3, pp. 421-424
Voir la notice de l'article provenant de la source Math-Net.Ru
We continue the study of indecomposable finite (consisting of a finite number of points) pseudometric spaces (i.e., spaces whose only decomposition into a sum is the division of all distances in equal proportion). We prove that the indecomposability property is invariant under the following operation: connect two disjoint points by an additional simple chain, which is the inverted copy of the shortest path connecting these points. The indecomposability of the spaces presented by the graphs $K_{m,n}$ ($m\ge2$, $n\ge3$) with edges of equal length is also proved.
@article{MZM_1998_63_3_a12,
author = {M. \'E. Mikhailov},
title = {Further criteria for the indecomposability of finite pseudometric spaces},
journal = {Matemati\v{c}eskie zametki},
pages = {421--424},
publisher = {mathdoc},
volume = {63},
number = {3},
year = {1998},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_3_a12/}
}
M. É. Mikhailov. Further criteria for the indecomposability of finite pseudometric spaces. Matematičeskie zametki, Tome 63 (1998) no. 3, pp. 421-424. http://geodesic.mathdoc.fr/item/MZM_1998_63_3_a12/