Further criteria for the indecomposability of finite pseudometric spaces
Matematičeskie zametki, Tome 63 (1998) no. 3, pp. 421-424.

Voir la notice de l'article provenant de la source Math-Net.Ru

We continue the study of indecomposable finite (consisting of a finite number of points) pseudometric spaces (i.e., spaces whose only decomposition into a sum is the division of all distances in equal proportion). We prove that the indecomposability property is invariant under the following operation: connect two disjoint points by an additional simple chain, which is the inverted copy of the shortest path connecting these points. The indecomposability of the spaces presented by the graphs $K_{m,n}$ ($m\ge2$, $n\ge3$) with edges of equal length is also proved.
@article{MZM_1998_63_3_a12,
     author = {M. \'E. Mikhailov},
     title = {Further criteria for the indecomposability of finite pseudometric spaces},
     journal = {Matemati\v{c}eskie zametki},
     pages = {421--424},
     publisher = {mathdoc},
     volume = {63},
     number = {3},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_3_a12/}
}
TY  - JOUR
AU  - M. É. Mikhailov
TI  - Further criteria for the indecomposability of finite pseudometric spaces
JO  - Matematičeskie zametki
PY  - 1998
SP  - 421
EP  - 424
VL  - 63
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_63_3_a12/
LA  - ru
ID  - MZM_1998_63_3_a12
ER  - 
%0 Journal Article
%A M. É. Mikhailov
%T Further criteria for the indecomposability of finite pseudometric spaces
%J Matematičeskie zametki
%D 1998
%P 421-424
%V 63
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_63_3_a12/
%G ru
%F MZM_1998_63_3_a12
M. É. Mikhailov. Further criteria for the indecomposability of finite pseudometric spaces. Matematičeskie zametki, Tome 63 (1998) no. 3, pp. 421-424. http://geodesic.mathdoc.fr/item/MZM_1998_63_3_a12/

[1] Mikhailov M. E., “Razlozhenie konechnykh psevdometricheskikh prostranstv”, Matem. zametki, 63:2 (1998), 225–234 | MR

[2] Zykov A. A., Osnovy teorii grafov, Nauka, M., 1987 | Zbl

[3] Ore O., Teoriya grafov, Nauka, M., 1980