On a class of graphs without 3-stars
Matematičeskie zametki, Tome 63 (1998) no. 3, pp. 407-413
Voir la notice de l'article provenant de la source Math-Net.Ru
M. Numata described edge regular graphs without 3-stars. All $\mu$-subgraphs of these graphs are regular of the same valency. We prove that a connected graph without 3-stars all of whose $\mu$- subgraphs are regular of valency $\alpha>0$ is either a triangular graph, or the Shläfli graph, or the icosahedron graph.
@article{MZM_1998_63_3_a10,
author = {A. A. Makhnev},
title = {On a class of graphs without 3-stars},
journal = {Matemati\v{c}eskie zametki},
pages = {407--413},
publisher = {mathdoc},
volume = {63},
number = {3},
year = {1998},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_3_a10/}
}
A. A. Makhnev. On a class of graphs without 3-stars. Matematičeskie zametki, Tome 63 (1998) no. 3, pp. 407-413. http://geodesic.mathdoc.fr/item/MZM_1998_63_3_a10/