On a class of graphs without 3-stars
Matematičeskie zametki, Tome 63 (1998) no. 3, pp. 407-413
Cet article a éte moissonné depuis la source Math-Net.Ru
M. Numata described edge regular graphs without 3-stars. All $\mu$-subgraphs of these graphs are regular of the same valency. We prove that a connected graph without 3-stars all of whose $\mu$- subgraphs are regular of valency $\alpha>0$ is either a triangular graph, or the Shläfli graph, or the icosahedron graph.
@article{MZM_1998_63_3_a10,
author = {A. A. Makhnev},
title = {On a class of graphs without 3-stars},
journal = {Matemati\v{c}eskie zametki},
pages = {407--413},
year = {1998},
volume = {63},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_3_a10/}
}
A. A. Makhnev. On a class of graphs without 3-stars. Matematičeskie zametki, Tome 63 (1998) no. 3, pp. 407-413. http://geodesic.mathdoc.fr/item/MZM_1998_63_3_a10/
[1] Hestenes M. D., Higman D. G., “Rank 3 groups and strongly regular graphs”, Proc. SIAM–AMS, 4 (1971), 141–159 | MR | Zbl
[2] Seidel J. J., “Strongly regular graphs with $(-1,1,0)$ adjacency matrix having eigenvalue 3”, Linear Algebra Appl., 1 (1968), 281–298 | DOI | MR | Zbl
[3] Numata M., “On a characterization of a class of regular graphs”, Osaka J. Math., 11 (1974), 389–400 | MR | Zbl
[4] Kabanov V. V., Makhnev A. A., “Koreberno regulyarnye grafy bez 3-lap”, Matem. zametki, 60:4 (1996), 495–503 | MR | Zbl
[5] Brouwer A. E., Cohen A. M., Neumaier A., Distance-Regular Graphs, Springer, Berlin, 1989