On a class of graphs without 3-stars
Matematičeskie zametki, Tome 63 (1998) no. 3, pp. 407-413

Voir la notice de l'article provenant de la source Math-Net.Ru

M. Numata described edge regular graphs without 3-stars. All $\mu$-subgraphs of these graphs are regular of the same valency. We prove that a connected graph without 3-stars all of whose $\mu$- subgraphs are regular of valency $\alpha>0$ is either a triangular graph, or the Shläfli graph, or the icosahedron graph.
@article{MZM_1998_63_3_a10,
     author = {A. A. Makhnev},
     title = {On a class of graphs without 3-stars},
     journal = {Matemati\v{c}eskie zametki},
     pages = {407--413},
     publisher = {mathdoc},
     volume = {63},
     number = {3},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_3_a10/}
}
TY  - JOUR
AU  - A. A. Makhnev
TI  - On a class of graphs without 3-stars
JO  - Matematičeskie zametki
PY  - 1998
SP  - 407
EP  - 413
VL  - 63
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_63_3_a10/
LA  - ru
ID  - MZM_1998_63_3_a10
ER  - 
%0 Journal Article
%A A. A. Makhnev
%T On a class of graphs without 3-stars
%J Matematičeskie zametki
%D 1998
%P 407-413
%V 63
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_63_3_a10/
%G ru
%F MZM_1998_63_3_a10
A. A. Makhnev. On a class of graphs without 3-stars. Matematičeskie zametki, Tome 63 (1998) no. 3, pp. 407-413. http://geodesic.mathdoc.fr/item/MZM_1998_63_3_a10/