On a class of graphs without 3-stars
Matematičeskie zametki, Tome 63 (1998) no. 3, pp. 407-413.

Voir la notice de l'article provenant de la source Math-Net.Ru

M. Numata described edge regular graphs without 3-stars. All $\mu$-subgraphs of these graphs are regular of the same valency. We prove that a connected graph without 3-stars all of whose $\mu$- subgraphs are regular of valency $\alpha>0$ is either a triangular graph, or the Shläfli graph, or the icosahedron graph.
@article{MZM_1998_63_3_a10,
     author = {A. A. Makhnev},
     title = {On a class of graphs without 3-stars},
     journal = {Matemati\v{c}eskie zametki},
     pages = {407--413},
     publisher = {mathdoc},
     volume = {63},
     number = {3},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_3_a10/}
}
TY  - JOUR
AU  - A. A. Makhnev
TI  - On a class of graphs without 3-stars
JO  - Matematičeskie zametki
PY  - 1998
SP  - 407
EP  - 413
VL  - 63
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_63_3_a10/
LA  - ru
ID  - MZM_1998_63_3_a10
ER  - 
%0 Journal Article
%A A. A. Makhnev
%T On a class of graphs without 3-stars
%J Matematičeskie zametki
%D 1998
%P 407-413
%V 63
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_63_3_a10/
%G ru
%F MZM_1998_63_3_a10
A. A. Makhnev. On a class of graphs without 3-stars. Matematičeskie zametki, Tome 63 (1998) no. 3, pp. 407-413. http://geodesic.mathdoc.fr/item/MZM_1998_63_3_a10/

[1] Hestenes M. D., Higman D. G., “Rank 3 groups and strongly regular graphs”, Proc. SIAM–AMS, 4 (1971), 141–159 | MR | Zbl

[2] Seidel J. J., “Strongly regular graphs with $(-1,1,0)$ adjacency matrix having eigenvalue 3”, Linear Algebra Appl., 1 (1968), 281–298 | DOI | MR | Zbl

[3] Numata M., “On a characterization of a class of regular graphs”, Osaka J. Math., 11 (1974), 389–400 | MR | Zbl

[4] Kabanov V. V., Makhnev A. A., “Koreberno regulyarnye grafy bez 3-lap”, Matem. zametki, 60:4 (1996), 495–503 | MR | Zbl

[5] Brouwer A. E., Cohen A. M., Neumaier A., Distance-Regular Graphs, Springer, Berlin, 1989