Additive inequalities for intermediate derivatives of differentiable mappings of Banach spaces
Matematičeskie zametki, Tome 63 (1998) no. 3, pp. 332-342
Voir la notice de l'article provenant de la source Math-Net.Ru
Suppose that $X$ and $Y$ are real Banach spaces, $U\subset X$ is an open bounded set star-shaped with respect to some point, $n,k\in\mathbb N$, $k$, and $M_{n,k}(U,Y)$ is the sharp constant in the Markov type inequality for derivatives of polynomial mappings. It is proved that for any $M\ge M_{n,k}(U,Y)$ there exists a constant $B>0$ such that for any function$f\in C^n(U,Y)$ the following inequality holds:
$$
|\kern -.8pt|\kern -.8pt|f^{(k)}|\kern -.8pt|\kern -.8pt|_U\le M|\kern -.8pt|\kern -.8pt|f|\kern -.8pt|\kern -.8pt|_U+B|\kern -.8pt|\kern -.8pt|f^{(n)}|\kern -.8pt|\kern -.8pt|_U.
$$
The constant $M=M_{n-1,k}(U,Y)$ is best possible in the sense that $M_{n-1,k}(U,Y)=\inf M$, where $\inf$ is taken over all $M$ such that for some $B>0$ the estimate holds for all $f\in C^n(U,Y)$.
@article{MZM_1998_63_3_a1,
author = {V. F. Babenko and V. A. Kofanov and S. A. Pichugov},
title = {Additive inequalities for intermediate derivatives of differentiable mappings of {Banach} spaces},
journal = {Matemati\v{c}eskie zametki},
pages = {332--342},
publisher = {mathdoc},
volume = {63},
number = {3},
year = {1998},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_3_a1/}
}
TY - JOUR AU - V. F. Babenko AU - V. A. Kofanov AU - S. A. Pichugov TI - Additive inequalities for intermediate derivatives of differentiable mappings of Banach spaces JO - Matematičeskie zametki PY - 1998 SP - 332 EP - 342 VL - 63 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1998_63_3_a1/ LA - ru ID - MZM_1998_63_3_a1 ER -
%0 Journal Article %A V. F. Babenko %A V. A. Kofanov %A S. A. Pichugov %T Additive inequalities for intermediate derivatives of differentiable mappings of Banach spaces %J Matematičeskie zametki %D 1998 %P 332-342 %V 63 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_1998_63_3_a1/ %G ru %F MZM_1998_63_3_a1
V. F. Babenko; V. A. Kofanov; S. A. Pichugov. Additive inequalities for intermediate derivatives of differentiable mappings of Banach spaces. Matematičeskie zametki, Tome 63 (1998) no. 3, pp. 332-342. http://geodesic.mathdoc.fr/item/MZM_1998_63_3_a1/