Additive inequalities for intermediate derivatives of differentiable mappings of Banach spaces
Matematičeskie zametki, Tome 63 (1998) no. 3, pp. 332-342.

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose that $X$ and $Y$ are real Banach spaces, $U\subset X$ is an open bounded set star-shaped with respect to some point, $n,k\in\mathbb N$, $k$, and $M_{n,k}(U,Y)$ is the sharp constant in the Markov type inequality for derivatives of polynomial mappings. It is proved that for any $M\ge M_{n,k}(U,Y)$ there exists a constant $B>0$ such that for any function$f\in C^n(U,Y)$ the following inequality holds: $$ |\kern -.8pt|\kern -.8pt|f^{(k)}|\kern -.8pt|\kern -.8pt|_U\le M|\kern -.8pt|\kern -.8pt|f|\kern -.8pt|\kern -.8pt|_U+B|\kern -.8pt|\kern -.8pt|f^{(n)}|\kern -.8pt|\kern -.8pt|_U. $$ The constant $M=M_{n-1,k}(U,Y)$ is best possible in the sense that $M_{n-1,k}(U,Y)=\inf M$, where $\inf$ is taken over all $M$ such that for some $B>0$ the estimate holds for all $f\in C^n(U,Y)$.
@article{MZM_1998_63_3_a1,
     author = {V. F. Babenko and V. A. Kofanov and S. A. Pichugov},
     title = {Additive inequalities for intermediate derivatives of differentiable mappings of {Banach} spaces},
     journal = {Matemati\v{c}eskie zametki},
     pages = {332--342},
     publisher = {mathdoc},
     volume = {63},
     number = {3},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_3_a1/}
}
TY  - JOUR
AU  - V. F. Babenko
AU  - V. A. Kofanov
AU  - S. A. Pichugov
TI  - Additive inequalities for intermediate derivatives of differentiable mappings of Banach spaces
JO  - Matematičeskie zametki
PY  - 1998
SP  - 332
EP  - 342
VL  - 63
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_63_3_a1/
LA  - ru
ID  - MZM_1998_63_3_a1
ER  - 
%0 Journal Article
%A V. F. Babenko
%A V. A. Kofanov
%A S. A. Pichugov
%T Additive inequalities for intermediate derivatives of differentiable mappings of Banach spaces
%J Matematičeskie zametki
%D 1998
%P 332-342
%V 63
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_63_3_a1/
%G ru
%F MZM_1998_63_3_a1
V. F. Babenko; V. A. Kofanov; S. A. Pichugov. Additive inequalities for intermediate derivatives of differentiable mappings of Banach spaces. Matematičeskie zametki, Tome 63 (1998) no. 3, pp. 332-342. http://geodesic.mathdoc.fr/item/MZM_1998_63_3_a1/

[1] Kartan A., Differentsialnoe ischislenie. Differentsialnye formy, Mir, M., 1971 | Zbl

[2] Landau E., “Einige Ungleichungen für zweimal differenzierbare Functionen”, Proc. London Math. Soc., 13 (1913), 43–49 | DOI

[3] Hadamard J., “Sur le module maximum d'une fonction et de ses derivées”, C. R. Soc. Math. France, 41 (1914), 68–72

[4] Burenkov V. I., “O tochnykh postoyannykh v neravenstvakh dlya norm promezhutochnykh proizvodnykh na konechnom intervale”, Tr. MIAN, 156, Nauka, M., 1980, 22–29 | MR | Zbl

[5] Burenkov V. I., “O tochnykh postoyannykh v neravenstvakh dlya norm promezhutochnykh proizvodnykh na konechnom intervale, II”, Tr. MIAN, 173, Nauka, M., 1986, 38–49 | MR | Zbl

[6] Shadrin A. Yu., “To the Landau–Kolmogorov problem on a finite interval”, Proc. Intern. Conf. (Voneshta Voda, June 18–24), 1993, 192–204

[7] Burenkov V. I., Gusakov V. A., “O tochnykh konstantakh v teoremakh vlozheniya Soboleva, III”, Tr. MIAN, 204, Nauka, M., 1993, 68–80 | Zbl

[8] Markov V. A., O funktsiyakh, naimenee uklonyayuschikhsya ot nulya v dannom promezhutke, SPb, 1892

[9] Shadrin A. Yu., “O tochnykh konstantakh v neravenstvakh mezhdu $L_\infty$-normami proizvodnykh na konechnom intervale”, Dokl. RAN, 326 (1992), 53–56

[10] Babenko V. F., Kofanov V. A., Pichugov S. A., “O neravenstvakh dlya norm promezhutochnykh proizvodnykh na konechnom intervale”, Ukr. matem. zh., 47:1 (1995), 105–107 | MR | Zbl

[11] Babenko V. F., Kofanov V. A., Pichugov S. A., “O neravenstvakh dlya norm proizvodnykh na otrezke”, Mezhdunarodnaya konferentsiya “Teoriya priblizhenii i zadachi vychislitelnoi matematiki”, Tezisy dokl. (Dnepropetrovsk, 26–28 maya), Dnepropetrovsk, 1993, 12

[12] Andrianov A. V., “Analogi neravenstv A. Markova i S. Bernshteina dlya mnogochlenov v banakhovykh prostranstvakh”, Matem. zametki, 52:5 (1992), 15–20 | MR

[13] Dedonne Zh., Osnovy sovremennogo analiza, Mir, M., 1964

[14] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975 | Zbl

[15] Pichugov S. A., “Tochnye otsenki priblizheniya v $L_p$ funktsiyami vida $\phi(x)+\psi(y)$”, Ukr. matem. zh., 42:1 (1990), 122–125 | MR | Zbl