On free semigroups of automaton transformations
Matematičeskie zametki, Tome 63 (1998) no. 2, pp. 248-259.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is established that the subset of free $k$-generated subsemigroups of the semigroup of all automaton transformations over a finite alphabet is a second category set (in the sense of the Baire category approach) in the set of all $k$-generated subsemigroups. A continuum series of pairs of automaton transformations each of which generates a free semigroup of rank two is indicated. A criterion is established for this semigroup to be a finite-automaton group.
@article{MZM_1998_63_2_a8,
     author = {A. S. Oliinyk},
     title = {On free semigroups of automaton transformations},
     journal = {Matemati\v{c}eskie zametki},
     pages = {248--259},
     publisher = {mathdoc},
     volume = {63},
     number = {2},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_2_a8/}
}
TY  - JOUR
AU  - A. S. Oliinyk
TI  - On free semigroups of automaton transformations
JO  - Matematičeskie zametki
PY  - 1998
SP  - 248
EP  - 259
VL  - 63
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_63_2_a8/
LA  - ru
ID  - MZM_1998_63_2_a8
ER  - 
%0 Journal Article
%A A. S. Oliinyk
%T On free semigroups of automaton transformations
%J Matematičeskie zametki
%D 1998
%P 248-259
%V 63
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_63_2_a8/
%G ru
%F MZM_1998_63_2_a8
A. S. Oliinyk. On free semigroups of automaton transformations. Matematičeskie zametki, Tome 63 (1998) no. 2, pp. 248-259. http://geodesic.mathdoc.fr/item/MZM_1998_63_2_a8/

[1] Ufnarovskii V. A., “Kombinatornye i asimptoticheskie metody v algebre”, Itogi nauki i tekhn. Sovrem. probl. matem. Fundament. napravleniya, 57, VINITI, M., 1990, 5–177 | MR

[2] Zarovnyi V. P., “Avtomatnye podstanovki i spleteniya grupp”, Dokl. AN SSSR, 160:3 (1965), 562–565 | MR | Zbl

[3] Kaloujnine L. A., Beleckij P. M., Fejnberg V. Z., Kranzprodukte, Teubner, Leipzig, 1987

[4] Wells C., “Some applications of the wreath product construction”, Amer. Math. Monthly, 83 (1976), 317–338 | DOI | MR | Zbl

[5] Aleshin S. V., “Konechnye avtomaty i problema Bernsaida o periodicheskikh gruppakh”, Matem. zametki, 11:3 (1972), 319–328 | MR | Zbl

[6] Aleshin S. V., “Svobodnaya gruppa konechnykh avtomatov”, Vestn. MGU. Ser. 1. Matem., mekh., 1983, no. 4, 12–14 | MR | Zbl

[7] Tits J., “Free subgroups in linear groups”, J. Algebra, 20 (1972), 250–270 | DOI | MR | Zbl

[8] Epstein D. B. A., “Almost all subgroups of a Lie group are free”, J. Algebra, 19 (1971), 261–262 | DOI | MR | Zbl

[9] Dixon J. D., “Most finitely generated permutation groups are free”, Bull. London Math. Soc., 22 (1990), 222–226 | DOI | MR | Zbl

[10] Bhattacharjee M., “The ubiquity of free subgroups in certain inverse limits of groups”, J. Algebra, 172 (1995), 134–146 | DOI | MR | Zbl

[11] Kudryavtsev V. B., Aleshin S. V., Podkolzin A. S., Vvedenie v teoriyu avtomatov, Nauka, M., 1985

[12] Holland W. C., “The characterization of generalized wreath product”, J. Algebra, 13 (1969), 152–172 | DOI | MR | Zbl

[13] Aleksandryan R. A., Mirzakhanyan E. A., Obschaya topologiya, Vysshaya shkola, M., 1979 | Zbl

[14] Serr Zh.-P., Kogomologii Galua, Mir, M., 1968

[15] Suschanskii V. I., “Standartni pidgrupi grupi izometrii metrichnogo prostoru tsilikh $p$-adichnikh chisel”, Visnik KDU. Ser. matem., mekh., 1988, no. 30, 100–107 | Zbl