Layer-projective lattices. I
Matematičeskie zametki, Tome 63 (1998) no. 2, pp. 170-182.

Voir la notice de l'article provenant de la source Math-Net.Ru

The class of layer-projective lattices is singled out. For example, it contains the lattices of subgroups of finite Abelian $p$-groups, finite modular lattices of centralizers that are indecomposable into a finite sum, and lattices of subspaces of a finite-dimensional linear space over a finite field that are invariant with respect to a linear operator with zero eigenvalues. In the class of layer-projective lattices, the notion of type (of a lattice) is naturally introduced and the isomorphism problem for lattices of the same type is posed. This problem is positively solved for some special types of layer-projective lattices. The main method is the layer-wise lifting of the coordinates.
@article{MZM_1998_63_2_a1,
     author = {V. A. Antonov and Yu. A. Nazyrova},
     title = {Layer-projective lattices. {I}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {170--182},
     publisher = {mathdoc},
     volume = {63},
     number = {2},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_2_a1/}
}
TY  - JOUR
AU  - V. A. Antonov
AU  - Yu. A. Nazyrova
TI  - Layer-projective lattices. I
JO  - Matematičeskie zametki
PY  - 1998
SP  - 170
EP  - 182
VL  - 63
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_63_2_a1/
LA  - ru
ID  - MZM_1998_63_2_a1
ER  - 
%0 Journal Article
%A V. A. Antonov
%A Yu. A. Nazyrova
%T Layer-projective lattices. I
%J Matematičeskie zametki
%D 1998
%P 170-182
%V 63
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_63_2_a1/
%G ru
%F MZM_1998_63_2_a1
V. A. Antonov; Yu. A. Nazyrova. Layer-projective lattices. I. Matematičeskie zametki, Tome 63 (1998) no. 2, pp. 170-182. http://geodesic.mathdoc.fr/item/MZM_1998_63_2_a1/

[1] Sudzuki M., Stroenie gruppy i stroenie struktury ee podgrupp, IL, M., 1960

[2] Yakovlev B. V., “Ob usloviyakh, pri kotorykh reshetka izomorfna reshetke podgrupp gruppy”, Algebra i logika, 13:6 (1974), 694–712 | MR | Zbl

[3] Anischenko S. A., “O predstavlenii nekotorykh modulyarnykh struktur strukturami podgrupp”, Matem. zapiski Krasnoyarskogo gospedinstituta, 1965, no. 1, 1–21

[4] Birkgof G., Teoriya reshetok, Nauka, M., 1984

[5] Kholl M., Kombinatorika, Mir, M., 1970

[6] Kertesi F., Vvedenie v konechnye geometrii, Nauka, M., 1980

[7] Jonsson B., Monk G. S., “Representations of primary arguesian lattices”, Pacific J. Math., 30:1 (1969), 95–139 | MR | Zbl

[8] Monk G. S., “Desargues law and the representation of primary lattices”, Pacific J. Math., 30:1 (1969), 175–186 | MR | Zbl

[9] Antonov V. A., “Ob odnom klasse modulyarnykh reshetok konechnoi dliny”, Algebra i logika, 30:1 (1991), 3–14 | MR

[10] Antonov V. A., “Pravilnye $C$-reshetki i reshetki tsentralizatorov”, Vestn. Chelyabinskogo un-ta. Ser. matem., mekh., 2:1 (1994), 17–28 | MR | Zbl

[11] Antonov V. A., “Gruppy tipa Gashyutsa i blizkie k nim gruppy”, Matem. zametki, 27:6 (1980), 839–857 | MR | Zbl