Mosaic approximations of discrete analogs of Calder\'on--Zygmund operators
Matematičeskie zametki, Tome 63 (1998) no. 1, pp. 81-94
Voir la notice de l'article provenant de la source Math-Net.Ru
Asymptotic estimates of the form $\operatorname{mr}A=O(\ln N\cdot\ln^d\varepsilon^{-1})$, where $d$ is the dimension of the initial space, for mosaic ranks of discrete analog of Calderón–Zygmund operators are obtained for various mosaic covers.
@article{MZM_1998_63_1_a8,
author = {N. \'E. Mikhailovskii},
title = {Mosaic approximations of discrete analogs of {Calder\'on--Zygmund} operators},
journal = {Matemati\v{c}eskie zametki},
pages = {81--94},
publisher = {mathdoc},
volume = {63},
number = {1},
year = {1998},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_1_a8/}
}
N. É. Mikhailovskii. Mosaic approximations of discrete analogs of Calder\'on--Zygmund operators. Matematičeskie zametki, Tome 63 (1998) no. 1, pp. 81-94. http://geodesic.mathdoc.fr/item/MZM_1998_63_1_a8/