Mosaic approximations of discrete analogs of Calder\'on--Zygmund operators
Matematičeskie zametki, Tome 63 (1998) no. 1, pp. 81-94

Voir la notice de l'article provenant de la source Math-Net.Ru

Asymptotic estimates of the form $\operatorname{mr}A=O(\ln N\cdot\ln^d\varepsilon^{-1})$, where $d$ is the dimension of the initial space, for mosaic ranks of discrete analog of Calderón–Zygmund operators are obtained for various mosaic covers.
@article{MZM_1998_63_1_a8,
     author = {N. \'E. Mikhailovskii},
     title = {Mosaic approximations of discrete analogs of {Calder\'on--Zygmund} operators},
     journal = {Matemati\v{c}eskie zametki},
     pages = {81--94},
     publisher = {mathdoc},
     volume = {63},
     number = {1},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_1_a8/}
}
TY  - JOUR
AU  - N. É. Mikhailovskii
TI  - Mosaic approximations of discrete analogs of Calder\'on--Zygmund operators
JO  - Matematičeskie zametki
PY  - 1998
SP  - 81
EP  - 94
VL  - 63
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_63_1_a8/
LA  - ru
ID  - MZM_1998_63_1_a8
ER  - 
%0 Journal Article
%A N. É. Mikhailovskii
%T Mosaic approximations of discrete analogs of Calder\'on--Zygmund operators
%J Matematičeskie zametki
%D 1998
%P 81-94
%V 63
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_63_1_a8/
%G ru
%F MZM_1998_63_1_a8
N. É. Mikhailovskii. Mosaic approximations of discrete analogs of Calder\'on--Zygmund operators. Matematičeskie zametki, Tome 63 (1998) no. 1, pp. 81-94. http://geodesic.mathdoc.fr/item/MZM_1998_63_1_a8/