On the total variation for functions of several variables and a multidimensional analog of Helly's selection principle
Matematičeskie zametki, Tome 63 (1998) no. 1, pp. 69-80 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We introduce the new notion of total variation for the Hardy class of functions of several variables and state various properties, similar to those in the one-dimensional case, for functions belonging to this class. In particular, we prove a precise version of Helly's selection principle for this class.
@article{MZM_1998_63_1_a7,
     author = {A. S. Leonov},
     title = {On the total variation for functions of several variables and a multidimensional analog of {Helly's} selection principle},
     journal = {Matemati\v{c}eskie zametki},
     pages = {69--80},
     year = {1998},
     volume = {63},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_1_a7/}
}
TY  - JOUR
AU  - A. S. Leonov
TI  - On the total variation for functions of several variables and a multidimensional analog of Helly's selection principle
JO  - Matematičeskie zametki
PY  - 1998
SP  - 69
EP  - 80
VL  - 63
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_63_1_a7/
LA  - ru
ID  - MZM_1998_63_1_a7
ER  - 
%0 Journal Article
%A A. S. Leonov
%T On the total variation for functions of several variables and a multidimensional analog of Helly's selection principle
%J Matematičeskie zametki
%D 1998
%P 69-80
%V 63
%N 1
%U http://geodesic.mathdoc.fr/item/MZM_1998_63_1_a7/
%G ru
%F MZM_1998_63_1_a7
A. S. Leonov. On the total variation for functions of several variables and a multidimensional analog of Helly's selection principle. Matematičeskie zametki, Tome 63 (1998) no. 1, pp. 69-80. http://geodesic.mathdoc.fr/item/MZM_1998_63_1_a7/

[1] Hahn H., Theorie der reellen Funktionen, V. I, Springer, Berlin, 1921

[2] Hobson E. W., The theory of functions of a real variable and the theory of Fourier's series, V. I, 3rd ed., Cambridge Univ. Press, Cambridge, 1927

[3] Clarkson J. A., Adams C. R., “On the definition of bounded variation for functions of two variables”, Trans. Amer. Math. Soc., 35:4 (1933), 824–854 | DOI | MR | Zbl

[4] Vitushkin A. G., O mnogomernykh variatsiyakh, Gostekhizdat, M., 1955

[5] Natanson I. P., Teoriya funktsii veschestvennoi peremennoi, Nauka, M., 1974

[6] Hardy G. H., “On double Fourier series, and especially those which represent the double zeta-functions with real and incommensurable parameters”, Quart. J. Math. Oxford, 37 (1905), 53–79

[7] Bokhner S., Lektsii ob integralakh Fure (s dobavleniem avtora o monotonnykh funktsiyakh, integralakh Stiltesa i garmonicheskom analize), Fizmatgiz, M., 1962

[8] Billingsli P., Skhodimost veroyatnostnykh mer, Nauka, M., 1977

[9] Ivanov L. D., Variatsii mnozhestv i funktsii, Nauka, M., 1975

[10] Tikhonov A. N., Leonov A. S., Yagola A. G., Nelineinye nekorrektnye zadachi, Nauka, M., 1995

[11] Kamke E., Integral Lebega–Stiltesa, Fizmatgiz, M., 1959

[12] Shilov G. E., Gurevich B. L., Integral, mera, proizvodnaya, Nauka, M., 1967

[13] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1977 | Zbl

[14] Young W. H., Young G. C., “On the discontinuities of monotone functions of several variables”, Proc. London Math. Soc. (2), 22 (1924), 124–142 | DOI

[15] Adams C. R., Clarkson J. A., “Properties of functions $f(x,y)$ of bounded variation”, Trans. Amer. Math. Soc., 36:4 (1934), 711–730 | DOI | MR | Zbl