On the total variation for functions of several variables and a multidimensional analog of Helly's selection principle
Matematičeskie zametki, Tome 63 (1998) no. 1, pp. 69-80

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce the new notion of total variation for the Hardy class of functions of several variables and state various properties, similar to those in the one-dimensional case, for functions belonging to this class. In particular, we prove a precise version of Helly's selection principle for this class.
@article{MZM_1998_63_1_a7,
     author = {A. S. Leonov},
     title = {On the total variation for functions of several variables and a multidimensional analog of {Helly's} selection principle},
     journal = {Matemati\v{c}eskie zametki},
     pages = {69--80},
     publisher = {mathdoc},
     volume = {63},
     number = {1},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_1_a7/}
}
TY  - JOUR
AU  - A. S. Leonov
TI  - On the total variation for functions of several variables and a multidimensional analog of Helly's selection principle
JO  - Matematičeskie zametki
PY  - 1998
SP  - 69
EP  - 80
VL  - 63
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_63_1_a7/
LA  - ru
ID  - MZM_1998_63_1_a7
ER  - 
%0 Journal Article
%A A. S. Leonov
%T On the total variation for functions of several variables and a multidimensional analog of Helly's selection principle
%J Matematičeskie zametki
%D 1998
%P 69-80
%V 63
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_63_1_a7/
%G ru
%F MZM_1998_63_1_a7
A. S. Leonov. On the total variation for functions of several variables and a multidimensional analog of Helly's selection principle. Matematičeskie zametki, Tome 63 (1998) no. 1, pp. 69-80. http://geodesic.mathdoc.fr/item/MZM_1998_63_1_a7/