Transformation of equations with retarded argument to equations with the best argument
Matematičeskie zametki, Tome 63 (1998) no. 1, pp. 62-68

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of choosing the best argument in the Cauchy problem for a system of ordinary differential equations with retarded argument is studied from the viewpoint of the method of continuation of the solution with respect to a parameter. It is proved that the arc length counted along the integral curve of the problem is the best argument for the system of continuation equations to be well-posed in the best possible way. A transformation of the Cauchy problem to the best argument is obtained.
@article{MZM_1998_63_1_a6,
     author = {E. B. Kuznetsov},
     title = {Transformation of equations with retarded argument to equations with the best argument},
     journal = {Matemati\v{c}eskie zametki},
     pages = {62--68},
     publisher = {mathdoc},
     volume = {63},
     number = {1},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_1_a6/}
}
TY  - JOUR
AU  - E. B. Kuznetsov
TI  - Transformation of equations with retarded argument to equations with the best argument
JO  - Matematičeskie zametki
PY  - 1998
SP  - 62
EP  - 68
VL  - 63
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_63_1_a6/
LA  - ru
ID  - MZM_1998_63_1_a6
ER  - 
%0 Journal Article
%A E. B. Kuznetsov
%T Transformation of equations with retarded argument to equations with the best argument
%J Matematičeskie zametki
%D 1998
%P 62-68
%V 63
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_63_1_a6/
%G ru
%F MZM_1998_63_1_a6
E. B. Kuznetsov. Transformation of equations with retarded argument to equations with the best argument. Matematičeskie zametki, Tome 63 (1998) no. 1, pp. 62-68. http://geodesic.mathdoc.fr/item/MZM_1998_63_1_a6/