Remarks on the descriptive metric characterization of singular sets of analytic functions
Matematičeskie zametki, Tome 63 (1998) no. 1, pp. 56-61
Voir la notice de l'article provenant de la source Math-Net.Ru
This work presents two remarks on the structure of singular boundary sets of functions analytic in the unit disk $D$: $|z|1$. The first remark concerns the conversion of the Plessner theorem. We prove that three pairwise disjoint subsets $E_1,E_2$, and $E_3$ of the unit circle $\Gamma$: $|z|=1$, $\bigcup_{i=1}^3E_i=\Gamma$ are the sets $I(f)$ of all Plessner points, $F(f)$ of all Fatou points, and $E(f)$ of all exceptional boundary points, respectively, for a function $f$ holomorphic in $D$ if and only if $E_1$ is a $G_\delta$-set and $E_3$ is a $G_{\delta\sigma}$-set of linear measure zero. In the second part of the paper it is shown that for any $G_{\delta\sigma}$-subset $E$ of the unit circle $\Gamma$ with a zero logarithmic capacity there exists a one-sheeted function on $D$ whose angular limits do not exist at the points of $E$ and do exist at all the other points of $\Gamma$.
@article{MZM_1998_63_1_a5,
author = {S. V. Kolesnikov},
title = {Remarks on the descriptive metric characterization of singular sets of analytic functions},
journal = {Matemati\v{c}eskie zametki},
pages = {56--61},
publisher = {mathdoc},
volume = {63},
number = {1},
year = {1998},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_1_a5/}
}
S. V. Kolesnikov. Remarks on the descriptive metric characterization of singular sets of analytic functions. Matematičeskie zametki, Tome 63 (1998) no. 1, pp. 56-61. http://geodesic.mathdoc.fr/item/MZM_1998_63_1_a5/