Remarks on the descriptive metric characterization of singular sets of analytic functions
Matematičeskie zametki, Tome 63 (1998) no. 1, pp. 56-61.

Voir la notice de l'article provenant de la source Math-Net.Ru

This work presents two remarks on the structure of singular boundary sets of functions analytic in the unit disk $D$: $|z|1$. The first remark concerns the conversion of the Plessner theorem. We prove that three pairwise disjoint subsets $E_1,E_2$, and $E_3$ of the unit circle $\Gamma$: $|z|=1$, $\bigcup_{i=1}^3E_i=\Gamma$ are the sets $I(f)$ of all Plessner points, $F(f)$ of all Fatou points, and $E(f)$ of all exceptional boundary points, respectively, for a function $f$ holomorphic in $D$ if and only if $E_1$ is a $G_\delta$-set and $E_3$ is a $G_{\delta\sigma}$-set of linear measure zero. In the second part of the paper it is shown that for any $G_{\delta\sigma}$-subset $E$ of the unit circle $\Gamma$ with a zero logarithmic capacity there exists a one-sheeted function on $D$ whose angular limits do not exist at the points of $E$ and do exist at all the other points of $\Gamma$.
@article{MZM_1998_63_1_a5,
     author = {S. V. Kolesnikov},
     title = {Remarks on the descriptive metric characterization of singular sets of analytic functions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {56--61},
     publisher = {mathdoc},
     volume = {63},
     number = {1},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_1_a5/}
}
TY  - JOUR
AU  - S. V. Kolesnikov
TI  - Remarks on the descriptive metric characterization of singular sets of analytic functions
JO  - Matematičeskie zametki
PY  - 1998
SP  - 56
EP  - 61
VL  - 63
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_63_1_a5/
LA  - ru
ID  - MZM_1998_63_1_a5
ER  - 
%0 Journal Article
%A S. V. Kolesnikov
%T Remarks on the descriptive metric characterization of singular sets of analytic functions
%J Matematičeskie zametki
%D 1998
%P 56-61
%V 63
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_63_1_a5/
%G ru
%F MZM_1998_63_1_a5
S. V. Kolesnikov. Remarks on the descriptive metric characterization of singular sets of analytic functions. Matematičeskie zametki, Tome 63 (1998) no. 1, pp. 56-61. http://geodesic.mathdoc.fr/item/MZM_1998_63_1_a5/

[1] Fatou P., “Series trigonometriques et series de Taylor”, Acta Math., 30 (1906), 335–400 | DOI

[2] Luzin N. N., “Sur la représentation conforme”, J. Reine Angew. Math., 158 (1919), 77–80

[3] Plessner A., “Über das Verhalten analytischer Functionen am Rande ihres Definitionsbereichs”, J. Reine Angew. Math., 158 (1927), 219–227

[4] Lappan P., “A characterization of Plessner points”, Bull. London Math. Soc., 2 (1970), 60–62 | DOI | MR | Zbl

[5] Kanatnikov A. N., “Obraschenie teoremy Meiera dlya meromorfnykh funktsii”, Dokl. AN SSSR, 238:5 (1978), 1043–1046 | MR | Zbl

[6] Lohwater A. J., Piranian G., “The boundary behavior of functions analytic in a disk”, Acad. Sci. Fenn. Ser. A I. Math., 239 (1957), 1–17

[7] Khasan A. A.-R., Kanatnikov A. N., “Obraschenie teoremy Meiera dlya proizvolnykh napravlenii”, Vestn. MGU. Ser. 1. Matem., mekh., 1984, no. 5, 38–41 | Zbl

[8] Kolesnikov S. V., “O mnozhestvakh nesuschestvovaniya radialnykh predelov ogranichennykh analiticheskikh funktsii”, Matem. sb., 185:4 (1994), 91–100 | Zbl

[9] Beurling A., “Ensembles exceptionnels”, Acta Math., 72 (1940), 1–13 | DOI | MR | Zbl

[10] Fedorov V. S., “O proizvodnoi kompleksnoi funktsii”, Dokl. AN SSSR, 63:1 (1948), 34–36