Conditions for the spatial flatness and spatial injectivity of an indecomposable CSL algebra of finite width
Matematičeskie zametki, Tome 63 (1998) no. 1, pp. 9-20
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper is concerned with the connection between the geometric properties of the lattice $L$ of subspaces of a Hilbert space $H$ and homological properties (flatness and injectivity) of $H$ regarded as a natural module over the reflexive algebra $\operatorname{Alg}L$ that consists of all operators leaving invariant each element of the lattice $L$. It follows from these results that the cohomology groups with coefficients in $\mathscr B(H)$ are trivial for a broad class of reflexive algebras.
@article{MZM_1998_63_1_a1,
author = {Yu. O. Golovin},
title = {Conditions for the spatial flatness and spatial injectivity of an indecomposable {CSL} algebra of finite width},
journal = {Matemati\v{c}eskie zametki},
pages = {9--20},
publisher = {mathdoc},
volume = {63},
number = {1},
year = {1998},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_1_a1/}
}
TY - JOUR AU - Yu. O. Golovin TI - Conditions for the spatial flatness and spatial injectivity of an indecomposable CSL algebra of finite width JO - Matematičeskie zametki PY - 1998 SP - 9 EP - 20 VL - 63 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1998_63_1_a1/ LA - ru ID - MZM_1998_63_1_a1 ER -
Yu. O. Golovin. Conditions for the spatial flatness and spatial injectivity of an indecomposable CSL algebra of finite width. Matematičeskie zametki, Tome 63 (1998) no. 1, pp. 9-20. http://geodesic.mathdoc.fr/item/MZM_1998_63_1_a1/