Conditions for the spatial flatness and spatial injectivity of an indecomposable CSL algebra of finite width
Matematičeskie zametki, Tome 63 (1998) no. 1, pp. 9-20

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is concerned with the connection between the geometric properties of the lattice $L$ of subspaces of a Hilbert space $H$ and homological properties (flatness and injectivity) of $H$ regarded as a natural module over the reflexive algebra $\operatorname{Alg}L$ that consists of all operators leaving invariant each element of the lattice $L$. It follows from these results that the cohomology groups with coefficients in $\mathscr B(H)$ are trivial for a broad class of reflexive algebras.
@article{MZM_1998_63_1_a1,
     author = {Yu. O. Golovin},
     title = {Conditions for the spatial flatness and spatial injectivity of an indecomposable {CSL} algebra of finite width},
     journal = {Matemati\v{c}eskie zametki},
     pages = {9--20},
     publisher = {mathdoc},
     volume = {63},
     number = {1},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_1_a1/}
}
TY  - JOUR
AU  - Yu. O. Golovin
TI  - Conditions for the spatial flatness and spatial injectivity of an indecomposable CSL algebra of finite width
JO  - Matematičeskie zametki
PY  - 1998
SP  - 9
EP  - 20
VL  - 63
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_63_1_a1/
LA  - ru
ID  - MZM_1998_63_1_a1
ER  - 
%0 Journal Article
%A Yu. O. Golovin
%T Conditions for the spatial flatness and spatial injectivity of an indecomposable CSL algebra of finite width
%J Matematičeskie zametki
%D 1998
%P 9-20
%V 63
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_63_1_a1/
%G ru
%F MZM_1998_63_1_a1
Yu. O. Golovin. Conditions for the spatial flatness and spatial injectivity of an indecomposable CSL algebra of finite width. Matematičeskie zametki, Tome 63 (1998) no. 1, pp. 9-20. http://geodesic.mathdoc.fr/item/MZM_1998_63_1_a1/