Conditions for the spatial flatness and spatial injectivity of an indecomposable CSL algebra of finite width
Matematičeskie zametki, Tome 63 (1998) no. 1, pp. 9-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is concerned with the connection between the geometric properties of the lattice $L$ of subspaces of a Hilbert space $H$ and homological properties (flatness and injectivity) of $H$ regarded as a natural module over the reflexive algebra $\operatorname{Alg}L$ that consists of all operators leaving invariant each element of the lattice $L$. It follows from these results that the cohomology groups with coefficients in $\mathscr B(H)$ are trivial for a broad class of reflexive algebras.
@article{MZM_1998_63_1_a1,
     author = {Yu. O. Golovin},
     title = {Conditions for the spatial flatness and spatial injectivity of an indecomposable {CSL} algebra of finite width},
     journal = {Matemati\v{c}eskie zametki},
     pages = {9--20},
     publisher = {mathdoc},
     volume = {63},
     number = {1},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_1_a1/}
}
TY  - JOUR
AU  - Yu. O. Golovin
TI  - Conditions for the spatial flatness and spatial injectivity of an indecomposable CSL algebra of finite width
JO  - Matematičeskie zametki
PY  - 1998
SP  - 9
EP  - 20
VL  - 63
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_63_1_a1/
LA  - ru
ID  - MZM_1998_63_1_a1
ER  - 
%0 Journal Article
%A Yu. O. Golovin
%T Conditions for the spatial flatness and spatial injectivity of an indecomposable CSL algebra of finite width
%J Matematičeskie zametki
%D 1998
%P 9-20
%V 63
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_63_1_a1/
%G ru
%F MZM_1998_63_1_a1
Yu. O. Golovin. Conditions for the spatial flatness and spatial injectivity of an indecomposable CSL algebra of finite width. Matematičeskie zametki, Tome 63 (1998) no. 1, pp. 9-20. http://geodesic.mathdoc.fr/item/MZM_1998_63_1_a1/

[1] Golovin Yu. O., “Gomologicheskie svoistva gilbertovykh modulei nad gnezdovymi operatornymi algebrami”, Matem. zametki, 41:6 (1987), 769–775 | MR | Zbl

[2] Golovin Yu. O., “Kriterii prostranstvennoi proektivnosti nerazlozhimoi CSL-algebry operatorov”, UMN, 49:4 (1994), 161–162 | MR | Zbl

[3] Golovin Yu. O., “Svoistvo prostranstvennoi proektivnosti v klasse CSL-algebr s atomnym kommutantom”, Fundament. i prikl. matem., 1:1 (1995), 147–159 | MR | Zbl

[4] Longstaff W. E., “Strongly reflexive lattices”, J. London Math. Soc. (2), 11 (1975), 491–498 | DOI | MR | Zbl

[5] Khelemskii A. Ya., Gomologiya v banakhovykh i topologicheskikh algebrakh, Izd-vo MGU, M., 1986

[6] Gilfeather F., Smith R. R., “Cohomology for operator algebras: joins”, Amer. J. Math., 116 (1994), 541–561 | DOI | MR | Zbl

[7] Arveson W. E., “Operator algebras and invariant subspaces”, Ann. of Math., 100 (1974), 433–532 | DOI | MR | Zbl

[8] Davidson K. R., “Commutative subspace lattices”, Indiana Univ. Math. J., 27 (1978), 479–490 | DOI | MR | Zbl

[9] Gilfeather F., Hopenwasser A., Larson D. R., “Reflexive algebras with finite width lattices: tensor products, cohomology, compact perturbations”, J. Funct. Anal., 55 (1984), 176–199 | DOI | MR | Zbl

[10] Kaliman Sh. I., Selivanov Yu. V., “O kogomologiyakh operatornykh algebr”, Vestn. MGU. Ser. 1. Matem., mekh., 1974, no. 5, 24–27 | MR | Zbl

[11] Cristensen E., “Derivations of nest algebras”, Math. Ann., 229 (1977), 155–161 | DOI | MR

[12] Nielsen J. P., “Cohomology of some non-selfadjoint operator algebras”, Math. Scand., 47 (1980), 150–156 | MR | Zbl

[13] Lance E. C., “Cohomology and perturbations of nest algebras”, Proc. London Math. Soc. (3), 43 (1981), 334–356 | DOI | MR | Zbl