The number of components of complements to level surfaces of partially harmonic polynomials
Matematičeskie zametki, Tome 62 (1997) no. 6, pp. 831-835
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper $k$-harmonic polynomials in $\mathbb R^n$ i.e. polynomials satisfying the Laplace equation with respect to $k$ variables: $(\partial^2/\partial x_1^2+\dots+\partial^2/\partial x_k^2)F=0$ are considered; here $1\le k\le n$, $n\ge2$. For a polynomial $F$ (of degree $m$) of this type, it is proved that the number of components of the complements of its level sets does not exceed $2m^{n-1}+O(m^{n-2})$. Under the assumptions that the singular set of the level surface is compact or that the leading homogeneous part of the $k$-harmonic polynomial $F$ is nondegenerate, sharper estimates are also established.
@article{MZM_1997_62_6_a3,
author = {V. N. Karpushkin},
title = {The number of components of complements to level surfaces of partially harmonic polynomials},
journal = {Matemati\v{c}eskie zametki},
pages = {831--835},
publisher = {mathdoc},
volume = {62},
number = {6},
year = {1997},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1997_62_6_a3/}
}
TY - JOUR AU - V. N. Karpushkin TI - The number of components of complements to level surfaces of partially harmonic polynomials JO - Matematičeskie zametki PY - 1997 SP - 831 EP - 835 VL - 62 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1997_62_6_a3/ LA - ru ID - MZM_1997_62_6_a3 ER -
V. N. Karpushkin. The number of components of complements to level surfaces of partially harmonic polynomials. Matematičeskie zametki, Tome 62 (1997) no. 6, pp. 831-835. http://geodesic.mathdoc.fr/item/MZM_1997_62_6_a3/