The number of components of complements to level surfaces of partially harmonic polynomials
Matematičeskie zametki, Tome 62 (1997) no. 6, pp. 831-835.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper $k$-harmonic polynomials in $\mathbb R^n$ i.e. polynomials satisfying the Laplace equation with respect to $k$ variables: $(\partial^2/\partial x_1^2+\dots+\partial^2/\partial x_k^2)F=0$ are considered; here $1\le k\le n$, $n\ge2$. For a polynomial $F$ (of degree $m$) of this type, it is proved that the number of components of the complements of its level sets does not exceed $2m^{n-1}+O(m^{n-2})$. Under the assumptions that the singular set of the level surface is compact or that the leading homogeneous part of the $k$-harmonic polynomial $F$ is nondegenerate, sharper estimates are also established.
@article{MZM_1997_62_6_a3,
     author = {V. N. Karpushkin},
     title = {The number of components of complements to level surfaces of partially harmonic polynomials},
     journal = {Matemati\v{c}eskie zametki},
     pages = {831--835},
     publisher = {mathdoc},
     volume = {62},
     number = {6},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1997_62_6_a3/}
}
TY  - JOUR
AU  - V. N. Karpushkin
TI  - The number of components of complements to level surfaces of partially harmonic polynomials
JO  - Matematičeskie zametki
PY  - 1997
SP  - 831
EP  - 835
VL  - 62
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1997_62_6_a3/
LA  - ru
ID  - MZM_1997_62_6_a3
ER  - 
%0 Journal Article
%A V. N. Karpushkin
%T The number of components of complements to level surfaces of partially harmonic polynomials
%J Matematičeskie zametki
%D 1997
%P 831-835
%V 62
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1997_62_6_a3/
%G ru
%F MZM_1997_62_6_a3
V. N. Karpushkin. The number of components of complements to level surfaces of partially harmonic polynomials. Matematičeskie zametki, Tome 62 (1997) no. 6, pp. 831-835. http://geodesic.mathdoc.fr/item/MZM_1997_62_6_a3/

[1] Gudkov D. A., “Topologiya veschestvennykh proektivnykh algebraicheskikh mnogoobrazii”, UMN, 29:4 (1974), 3–79 | MR | Zbl

[2] Arnold V. I., “Indeks osoboi tochki vektornogo polya, neravenstva Petrovskogo–Oleinik i smeshannye struktury Khodzha”, Funktsion. analiz i ego prilozh., 12:1 (1978), 1–14 | Zbl

[3] Kurant R., Gilbert D., Metody matematicheskoi fiziki, T. 1, IL, M., 1933

[4] Karpushkin V. N., “Chislo komponent dopolneniya k giperpoverkhnosti urovnya garmonicheskogo polinoma”, Vestn. MGU. Ser. 1. Matem., mekh., 1981, no. 4, 3–4 | MR

[5] Milnor Dzh., Osobye tochki kompleksnykh giperpoverkhnostei, Mir, M., 1971 | Zbl

[6] Petrovskii I. G., Oleinik O. A., “O topologii deistvitelnykh algebraicheskikh giperpoverkhnostei”, Izv. AN SSSR. Ser. matem., 13 (1949), 389–402 | MR | Zbl

[7] Borel A., Haefliger A., “La classe d'homologie fondamentale des variétés analytiques”, Ann. Inst. Fourier (Grenoble), 2 (1958), 49–96

[8] Karpushkin V. N., “Tochnye po poryadku otsenki chisla komponent dopolneniya k nulyam garmonicheskikh polinomov”, Funktsion. analiz i ego prilozh., 19:4 (1985), 55–60 | MR | Zbl