Boundary value problem for the Burgers system
Matematičeskie zametki, Tome 62 (1997) no. 6, pp. 921-932

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the boundary value problem $$ \begin{gathered} \operatorname{div}(\rho V)=0,\qquad\rho|_{\Gamma_1}=\rho_0, \\ \rho(V,\nabla V)=\nu\Delta V,\qquad V|_\Gamma=V^0 \end{gathered} $$ for a vector function $V=(V_1,V_2)$ and a scalar function $\rho\ge0$ in a rectangular domain $\Omega\subset\mathbb R^2$ with boundary $\Gamma$. Here $$ \Gamma_1=\{x\in\Gamma: (V^0,n)0\},\qquad V_1^0|_\Gamma>0,\qquad\nu=\operatorname{const}>0. $$ We prove that this problem is solvable in Hölder classes.
@article{MZM_1997_62_6_a13,
     author = {N. N. Frolov},
     title = {Boundary value problem for the {Burgers} system},
     journal = {Matemati\v{c}eskie zametki},
     pages = {921--932},
     publisher = {mathdoc},
     volume = {62},
     number = {6},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1997_62_6_a13/}
}
TY  - JOUR
AU  - N. N. Frolov
TI  - Boundary value problem for the Burgers system
JO  - Matematičeskie zametki
PY  - 1997
SP  - 921
EP  - 932
VL  - 62
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1997_62_6_a13/
LA  - ru
ID  - MZM_1997_62_6_a13
ER  - 
%0 Journal Article
%A N. N. Frolov
%T Boundary value problem for the Burgers system
%J Matematičeskie zametki
%D 1997
%P 921-932
%V 62
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1997_62_6_a13/
%G ru
%F MZM_1997_62_6_a13
N. N. Frolov. Boundary value problem for the Burgers system. Matematičeskie zametki, Tome 62 (1997) no. 6, pp. 921-932. http://geodesic.mathdoc.fr/item/MZM_1997_62_6_a13/