Boundary value problem for the Burgers system
Matematičeskie zametki, Tome 62 (1997) no. 6, pp. 921-932
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the boundary value problem
$$
\begin{gathered}
\operatorname{div}(\rho V)=0,\qquad\rho|_{\Gamma_1}=\rho_0,
\\ \rho(V,\nabla V)=\nu\Delta V,\qquad V|_\Gamma=V^0
\end{gathered}
$$
for a vector function $V=(V_1,V_2)$ and a scalar function $\rho\ge0$ in a rectangular domain $\Omega\subset\mathbb R^2$ with boundary $\Gamma$. Here
$$
\Gamma_1=\{x\in\Gamma: (V^0,n)0\},\qquad
V_1^0|_\Gamma>0,\qquad\nu=\operatorname{const}>0.
$$
We prove that this problem is solvable in Hölder classes.
@article{MZM_1997_62_6_a13,
author = {N. N. Frolov},
title = {Boundary value problem for the {Burgers} system},
journal = {Matemati\v{c}eskie zametki},
pages = {921--932},
publisher = {mathdoc},
volume = {62},
number = {6},
year = {1997},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1997_62_6_a13/}
}
N. N. Frolov. Boundary value problem for the Burgers system. Matematičeskie zametki, Tome 62 (1997) no. 6, pp. 921-932. http://geodesic.mathdoc.fr/item/MZM_1997_62_6_a13/