Strong-norm error estimates for the projective-difference method for approximately solving abstract parabolic equations
Matematičeskie zametki, Tome 62 (1997) no. 6, pp. 898-909.

Voir la notice de l'article provenant de la source Math-Net.Ru

Solutions continuously differentiable with respect to time of parabolic equations in Hilbert space are obtained by the projective-difference method approximately. The discretization of the problem is carried out in the spatial variables using Galerkin's method, and in the time variable using Euler's implicit method. Strong-norm error estimates for approximate solutions are obtained. These estimates not only allow one to establish the convergence of the approximate solutions to the exact ones but also yield numerical characteristics of the rates of convergence. In particular, order-sharp error estimates for finite element subspaces are obtained.
@article{MZM_1997_62_6_a10,
     author = {V. V. Smagin},
     title = {Strong-norm error estimates for the projective-difference method for approximately solving abstract parabolic equations},
     journal = {Matemati\v{c}eskie zametki},
     pages = {898--909},
     publisher = {mathdoc},
     volume = {62},
     number = {6},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1997_62_6_a10/}
}
TY  - JOUR
AU  - V. V. Smagin
TI  - Strong-norm error estimates for the projective-difference method for approximately solving abstract parabolic equations
JO  - Matematičeskie zametki
PY  - 1997
SP  - 898
EP  - 909
VL  - 62
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1997_62_6_a10/
LA  - ru
ID  - MZM_1997_62_6_a10
ER  - 
%0 Journal Article
%A V. V. Smagin
%T Strong-norm error estimates for the projective-difference method for approximately solving abstract parabolic equations
%J Matematičeskie zametki
%D 1997
%P 898-909
%V 62
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1997_62_6_a10/
%G ru
%F MZM_1997_62_6_a10
V. V. Smagin. Strong-norm error estimates for the projective-difference method for approximately solving abstract parabolic equations. Matematičeskie zametki, Tome 62 (1997) no. 6, pp. 898-909. http://geodesic.mathdoc.fr/item/MZM_1997_62_6_a10/

[1] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971 | Zbl

[2] Berezanskii Yu. M., Razlozhenie po sobstvennym funktsiyam samosopryazhennykh operatorov, Naukova dumka, Kiev, 1965

[3] S. G. Krein (red.), Funktsionalnyi analiz, 2-e izd., Spravochnaya matematicheskaya biblioteka, Nauka, M., 1972

[4] Smagin V. V., “O razreshimosti abstraktnogo parabolicheskogo uravneniya s operatorom, oblast opredeleniya kotorogo zavisit ot vremeni”, Differents. uravneniya, 32:5 (1996), 711–712 | MR | Zbl

[5] Smagin V. V., “Koertsitivnye otsenki pogreshnostei proektsionnogo i proektsionno-raznostnogo metodov dlya parabolicheskikh uravnenii”, Matem. sb., 185:11 (1994), 79–94 | Zbl

[6] Smagin V. V., “Koertsitivnye otsenki pogreshnostei proektsionno-raznostnogo metoda dlya abstraktnogo parabolicheskogo uravneniya s operatorom, oblast opredeleniya kotorogo zavisit ot vremeni”, Sib. matem. zh., 37:2 (1996), 406–418 | MR | Zbl

[7] Zlotnik A. A., “Otsenki skorosti skhodimosti v $V_2(Q_T)$ proektsionno-raznostnykh skhem dlya parabolicheskikh uravnenii”, Vestn. MGU. Ser. 15. Vychislit. matem., kibern., 1980, no. 1, 27–35 | MR | Zbl

[8] Marchuk G. I., Agoshkov V. I., Vvedenie v proektsionno-setochnye metody, Nauka, M., 1981

[9] Smagin V. V., “Otsenki pogreshnosti poludiskretnykh priblizhenii po Galerkinu dlya parabolicheskikh uravnenii s kraevym usloviem tipa Neimana”, Izv. vuzov. Matem., 1996, no. 3, 50–57 | MR | Zbl

[10] Streng G., Fiks Dzh., Teoriya metoda konechnykh elementov, Mir, M., 1977