Lattice of subalgebras of the ring of continuous functions and Hewitt spaces
Matematičeskie zametki, Tome 62 (1997) no. 5, pp. 687-693.

Voir la notice de l'article provenant de la source Math-Net.Ru

The lattice $A(X)$ of all possible subalgebras of the ring of all continuous $\mathbb R$-valued functions defined on an $\mathbb R$-separated space $X$ is considered. A topological space is said to be a Hewitt space if it is homeomorphic to a closed subspace of a Tychonoff power of the real line $\mathbb R$. The main achievement of the paper is the proof of the fact that any Hewitt space $X$ is determined by the lattice $A(X)$. An original technique of minimal and maximal subalgebras is applied. It is shown that the lattice $A(X)$ is regular if and only if $X$ contains at most two points.
@article{MZM_1997_62_5_a5,
     author = {E. M. Vechtomov},
     title = {Lattice of subalgebras of the ring of continuous functions and {Hewitt} spaces},
     journal = {Matemati\v{c}eskie zametki},
     pages = {687--693},
     publisher = {mathdoc},
     volume = {62},
     number = {5},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1997_62_5_a5/}
}
TY  - JOUR
AU  - E. M. Vechtomov
TI  - Lattice of subalgebras of the ring of continuous functions and Hewitt spaces
JO  - Matematičeskie zametki
PY  - 1997
SP  - 687
EP  - 693
VL  - 62
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1997_62_5_a5/
LA  - ru
ID  - MZM_1997_62_5_a5
ER  - 
%0 Journal Article
%A E. M. Vechtomov
%T Lattice of subalgebras of the ring of continuous functions and Hewitt spaces
%J Matematičeskie zametki
%D 1997
%P 687-693
%V 62
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1997_62_5_a5/
%G ru
%F MZM_1997_62_5_a5
E. M. Vechtomov. Lattice of subalgebras of the ring of continuous functions and Hewitt spaces. Matematičeskie zametki, Tome 62 (1997) no. 5, pp. 687-693. http://geodesic.mathdoc.fr/item/MZM_1997_62_5_a5/

[1] Gillman L., Jerison M., Rings of Continuous Functions, Springer, New York, 1976 | Zbl

[2] Vechtomov E. M., “Voprosy opredelyaemosti topologicheskikh prostranstv algebraicheskimi sistemami nepreryvnykh funktsii”, Itogi nauki i tekhn. Algebra. Topologiya. Geometriya, 28, VINITI, M., 1990, 3–46

[3] Birkgof G., Teoriya reshetok, Nauka, M., 1984