Trigonometric series of classes $L^p(\mathbb T)$, $p\in\left]1;\infty\right[$ and their conservative means
Matematičeskie zametki, Tome 62 (1997) no. 5, pp. 677-686.

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose that a lower triangular matrix $\mu\colon[\mu_m^{(n)}]$ defines a conservative summation method for series, i.e., $$ \sup_{n\in{\mathbb Z}_0}\sum_{m=0}^n|\mu_m^{(n)}-\mu_{m+1}^{(n)}|\infty,\qquad \forall m\in{\mathbb Z}_0 \quad \lim_{n\to\infty}\mu_m^{(n)}=\rho_m\in\mathbb R, $$ and the sequence $(\rho_m)$, $m\in{\mathbb Z}_0$, is bounded away from zero. Then the trigonometric series $\sum_{m=-\infty}^\infty\gamma_me^{imx}$ is the Fourier series of a function $f\in L^p(\mathbb T)$, where $p\in\left]1;\infty\right[$, if and only if the sequence of $p$-norms of its $\mu$-means is bounded: $$ \sup_{n\in{\mathbb Z}_0}\biggl\|\sum_{m=-n}^n\mu_{|m|}^{(n)}\gamma_me^{imx}\biggr\|_p\infty. $$ In the case of the Fejér method, we have the test due to W. and G. Young (1913). In the case of the Fourier method, we obtain the converse of the Riesz theorem (1927).
@article{MZM_1997_62_5_a4,
     author = {I. N. Brui},
     title = {Trigonometric series of classes $L^p(\mathbb T)$, $p\in\left]1;\infty\right[$ and their conservative means},
     journal = {Matemati\v{c}eskie zametki},
     pages = {677--686},
     publisher = {mathdoc},
     volume = {62},
     number = {5},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1997_62_5_a4/}
}
TY  - JOUR
AU  - I. N. Brui
TI  - Trigonometric series of classes $L^p(\mathbb T)$, $p\in\left]1;\infty\right[$ and their conservative means
JO  - Matematičeskie zametki
PY  - 1997
SP  - 677
EP  - 686
VL  - 62
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1997_62_5_a4/
LA  - ru
ID  - MZM_1997_62_5_a4
ER  - 
%0 Journal Article
%A I. N. Brui
%T Trigonometric series of classes $L^p(\mathbb T)$, $p\in\left]1;\infty\right[$ and their conservative means
%J Matematičeskie zametki
%D 1997
%P 677-686
%V 62
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1997_62_5_a4/
%G ru
%F MZM_1997_62_5_a4
I. N. Brui. Trigonometric series of classes $L^p(\mathbb T)$, $p\in\left]1;\infty\right[$ and their conservative means. Matematičeskie zametki, Tome 62 (1997) no. 5, pp. 677-686. http://geodesic.mathdoc.fr/item/MZM_1997_62_5_a4/

[1] Edvards R., Ryady Fure v sovremennom izlozhenii, T. 1, Mir, M., 1985

[2] Bari N. K., Trigonometricheskie ryady, GIFML, M., 1961

[3] Edvards R., Ryady Fure v sovremennom izlozhenii, T. 2, Mir, M., 1985

[4] Zigmund A., Trigonometricheskie ryady, T. 1, Mir, M., 1965

[5] Young W. H., Young G. E., “On the theorem of Riesz–Fischer”, Quart. J. Pure Appl. Math., 44 (1913), 49–88

[6] Kislyakov S. V., “Klassicheskaya problematika analiza Fure”, Itogi nauki i tekhn. Sovrem. probl. matem. Fundament. napravleniya, 15, VINITI, M., 1987, 135–196 | MR

[7] Kachmazh S., Shteingauz G., Teoriya ortogonalnykh ryadov, GIFML, M., 1958

[8] Baron S., Vvedenie v teoriyu summiruemosti ryadov, Valgus, Tallin, 1977 | Zbl

[9] Tynnov M., “$T$-dopolnitelnye prostranstva koeffitsientov Fure”, Uch. zapiski Tartuskogo gos. un-ta, 192 (1966), 65–81 | MR | Zbl

[10] Tynnov M., “Koeffitsienty Fure i mnozhiteli summiruemosti”, Uch. zapiski Tartuskogo gos. un-ta, 253 (1970), 194–201 | MR | Zbl

[11] Riesz M., “Sur les fonctions conjuguées”, Math. Z., 27 (1927), 218–244 | DOI | MR

[12] Busko E., “Fonctions continues et fonctions bornées non adhérentes dans $L^\infty(T)$ à la suite de leurs sommes partielles de Fourier”, Studia Math., 34:3 (1970), 319–337 | MR | Zbl

[13] Khardi G., Raskhodyaschiesya ryady, IL, M., 1951

[14] Karleson L., “O skhodimosti ryadov Fure i o roste ikh chastnykh summ”, Matematika, 11:4 (1967), 113–132

[15] Zigmund A., Trigonometricheskie ryady, T. 2, Mir, M., 1965

[16] Rooney P. G., “On the representation of sequences as Fourier coefficients”, Proc. Amer. Math. Soc., 11 (1960), 762–768 | DOI | MR | Zbl

[17] Dvait G. B., Tablitsy integralov i drugie matematicheskie formuly, Nauka, M., 1973