Trigonometric series of classes $L^p(\mathbb T)$, $p\in\left]1;\infty\right[$ and their conservative means
Matematičeskie zametki, Tome 62 (1997) no. 5, pp. 677-686

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose that a lower triangular matrix $\mu\colon[\mu_m^{(n)}]$ defines a conservative summation method for series, i.e., $$ \sup_{n\in{\mathbb Z}_0}\sum_{m=0}^n|\mu_m^{(n)}-\mu_{m+1}^{(n)}|\infty,\qquad \forall m\in{\mathbb Z}_0 \quad \lim_{n\to\infty}\mu_m^{(n)}=\rho_m\in\mathbb R, $$ and the sequence $(\rho_m)$, $m\in{\mathbb Z}_0$, is bounded away from zero. Then the trigonometric series $\sum_{m=-\infty}^\infty\gamma_me^{imx}$ is the Fourier series of a function $f\in L^p(\mathbb T)$, where $p\in\left]1;\infty\right[$, if and only if the sequence of $p$-norms of its $\mu$-means is bounded: $$ \sup_{n\in{\mathbb Z}_0}\biggl\|\sum_{m=-n}^n\mu_{|m|}^{(n)}\gamma_me^{imx}\biggr\|_p\infty. $$ In the case of the Fejér method, we have the test due to W. and G. Young (1913). In the case of the Fourier method, we obtain the converse of the Riesz theorem (1927).
@article{MZM_1997_62_5_a4,
     author = {I. N. Brui},
     title = {Trigonometric series of classes $L^p(\mathbb T)$, $p\in\left]1;\infty\right[$ and their conservative means},
     journal = {Matemati\v{c}eskie zametki},
     pages = {677--686},
     publisher = {mathdoc},
     volume = {62},
     number = {5},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1997_62_5_a4/}
}
TY  - JOUR
AU  - I. N. Brui
TI  - Trigonometric series of classes $L^p(\mathbb T)$, $p\in\left]1;\infty\right[$ and their conservative means
JO  - Matematičeskie zametki
PY  - 1997
SP  - 677
EP  - 686
VL  - 62
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1997_62_5_a4/
LA  - ru
ID  - MZM_1997_62_5_a4
ER  - 
%0 Journal Article
%A I. N. Brui
%T Trigonometric series of classes $L^p(\mathbb T)$, $p\in\left]1;\infty\right[$ and their conservative means
%J Matematičeskie zametki
%D 1997
%P 677-686
%V 62
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1997_62_5_a4/
%G ru
%F MZM_1997_62_5_a4
I. N. Brui. Trigonometric series of classes $L^p(\mathbb T)$, $p\in\left]1;\infty\right[$ and their conservative means. Matematičeskie zametki, Tome 62 (1997) no. 5, pp. 677-686. http://geodesic.mathdoc.fr/item/MZM_1997_62_5_a4/