Characterization of generalized Chernikov groups among groups with involutions
Matematičeskie zametki, Tome 62 (1997) no. 4, pp. 577-587.

Voir la notice de l'article provenant de la source Math-Net.Ru

The class of generalized Chernikov groups is characterized, i.e., the class of periodic locally solvable groups with the primary ascending chain condition. The name of the class is related to the fact that the structure of such groups is close to that of Chernikov groups. Namely, a Chernikov group is defined as a finite extension of a direct product of finitely many quasi-cyclic groups, and a generalized Chernikov group is a layer-finite extension of a direct product $A$ of quasi-cyclic $p$-groups with finitely many factors for each prime $p$ such that each of its elements does not commute elementwise with only finitely many Sylow subgroups of $A$. A theorem that characterizes the generalized Chernikov groups in the class of groups with involution is proved.
@article{MZM_1997_62_4_a9,
     author = {V. I. Senashov},
     title = {Characterization of generalized {Chernikov} groups among groups with involutions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {577--587},
     publisher = {mathdoc},
     volume = {62},
     number = {4},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1997_62_4_a9/}
}
TY  - JOUR
AU  - V. I. Senashov
TI  - Characterization of generalized Chernikov groups among groups with involutions
JO  - Matematičeskie zametki
PY  - 1997
SP  - 577
EP  - 587
VL  - 62
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1997_62_4_a9/
LA  - ru
ID  - MZM_1997_62_4_a9
ER  - 
%0 Journal Article
%A V. I. Senashov
%T Characterization of generalized Chernikov groups among groups with involutions
%J Matematičeskie zametki
%D 1997
%P 577-587
%V 62
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1997_62_4_a9/
%G ru
%F MZM_1997_62_4_a9
V. I. Senashov. Characterization of generalized Chernikov groups among groups with involutions. Matematičeskie zametki, Tome 62 (1997) no. 4, pp. 577-587. http://geodesic.mathdoc.fr/item/MZM_1997_62_4_a9/

[1] Senashov V. I., “Groups with minimality condition”, Proceedings of the International Conference “Infinite Groups” (Ravello, Italy, May 23—27, 1994), eds. Francesco de Giovanny, Martin L. Newell, de Gruyter, Berlin–New York, 1995, 229—234

[2] Shunkov V. P., O vlozhenii primarnykh elementov v gruppe, Nauka, Novosibirsk, 1992 | Zbl

[3] Adyan S. I., Problema Bernsaida i tozhdestva v gruppakh, Nauka, M., 1975 | Zbl

[4] Olshanskii A. Yu., Geometriya opredelyayuschikh sootnoshenii v gruppakh, Nauka, M., 1989

[5] Chernikov S. N., Gruppy s zadannymi svoistvami dlya sistemy podgrupp, Nauka, M., 1980 | MR

[6] Shunkov V. P., Shafiro A. A., “Ob odnoi kharakterizatsii obobschenno chernikovskikh grupp”, XV Vsesoyuznaya algebraicheskaya konferentsiya, Tezisy dokl. Ch. 1. Gruppy, Izd-vo KrasGU, Krasnoyarsk, 1979, 185

[7] Polovitskii Ya. D., “Sloino-ekstremalnye gruppy”, Matem. sb., 56:1 (1962), 95–106 | MR

[8] Senashov V. I., Sloino konechnye gruppy, Nauka, Novosibirsk, 1993 | Zbl

[9] Kargapolov M. I., Merzlyakov Yu. I., Osnovy teorii grupp, 3-e izd., Nauka, M., 1982 | Zbl

[10] Shunkov V. P., Gruppy s involyutsiyami, 5, Preprint No 2, VTs SO AN SSSR, Krasnoyarsk, 1992

[11] Ivko M. N., Senashov V. I., On a new class of infinite groups, Preprint No 1, Computing Center of RAN, Krasnoyarsk, 1993

[12] Merzlyakov Yu. I., Ratsionalnye gruppy, Nauka, M., 1980

[13] Shunkov V. P., “Ob odnom klasse $p$-grupp”, Algebra i logika, 9:4 (1970), 484–496 | MR | Zbl

[14] Kholl M., Teoriya grupp, IL, M., 1962

[15] Ivko M. N., Kharakterizatsiya grupp, obladayuschikh sloino konechnoi periodicheskoi chastyu, Avtoreferat diss. $\dots$ k.f.-m.n., Ekaterinburg, 1993

[16] Kegel O. H., Wehrfritz B. A. F., Locally Finite Groups, North-Holland, Amsterdam–London, 1973 | Zbl

[17] Hartley B., “Finite groups of automorphisms of locally soluble groups”, J. Algebra, 57:1 (1979), 242–257 | DOI | MR | Zbl

[18] Izmailov A. N., “Kharakterizatsiya grupp $\mathrm{SL}(2,P)$ i $\mathrm{Sz}(P)$ nad lokalno konechnym polem $P$ kharakteristiki 2”, Algebra i logika, 24:2 (1985), 127–172 | MR | Zbl