An exact estimate of the boundary behavior of functions from Hardy--Sobolev classes in the critical case
Matematičeskie zametki, Tome 62 (1997) no. 4, pp. 527-539
Voir la notice de l'article provenant de la source Math-Net.Ru
In the critical case $\alpha p=n$ functions from the Hardy-Sobolev spaces $H_\alpha^p(B^n)$ have a limit almost everywhere on the boundary along certain regions of exponential contact with the boundary. It is proved in the paper that the maximal operator associated with these regions is bounded as an operator from $H_\alpha^p(B^n)$ to $L^p(\partial B^n)$.
@article{MZM_1997_62_4_a5,
author = {V. G. Krotov},
title = {An exact estimate of the boundary behavior of functions from {Hardy--Sobolev} classes in the critical case},
journal = {Matemati\v{c}eskie zametki},
pages = {527--539},
publisher = {mathdoc},
volume = {62},
number = {4},
year = {1997},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1997_62_4_a5/}
}
TY - JOUR AU - V. G. Krotov TI - An exact estimate of the boundary behavior of functions from Hardy--Sobolev classes in the critical case JO - Matematičeskie zametki PY - 1997 SP - 527 EP - 539 VL - 62 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1997_62_4_a5/ LA - ru ID - MZM_1997_62_4_a5 ER -
V. G. Krotov. An exact estimate of the boundary behavior of functions from Hardy--Sobolev classes in the critical case. Matematičeskie zametki, Tome 62 (1997) no. 4, pp. 527-539. http://geodesic.mathdoc.fr/item/MZM_1997_62_4_a5/