Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1997_62_4_a5, author = {V. G. Krotov}, title = {An exact estimate of the boundary behavior of functions from {Hardy--Sobolev} classes in the critical case}, journal = {Matemati\v{c}eskie zametki}, pages = {527--539}, publisher = {mathdoc}, volume = {62}, number = {4}, year = {1997}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1997_62_4_a5/} }
TY - JOUR AU - V. G. Krotov TI - An exact estimate of the boundary behavior of functions from Hardy--Sobolev classes in the critical case JO - Matematičeskie zametki PY - 1997 SP - 527 EP - 539 VL - 62 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1997_62_4_a5/ LA - ru ID - MZM_1997_62_4_a5 ER -
V. G. Krotov. An exact estimate of the boundary behavior of functions from Hardy--Sobolev classes in the critical case. Matematičeskie zametki, Tome 62 (1997) no. 4, pp. 527-539. http://geodesic.mathdoc.fr/item/MZM_1997_62_4_a5/
[1] Rudin U., Teoriya funktsii v edinichnom share v $\mathbb C^n$, Mir, M., 1984 | Zbl
[2] Ahern P., Cohn W., “Exceptional sets for Hardy–Sobolev function”, Indiana Univ. Math. J., 38:2 (1989), 417–452 | DOI | MR
[3] Krotov V. G., “Otsenki dlya maksimalnykh operatorov, svyazannykh s granichnym povedeniem, i ikh prilozheniya”, Tr. MIAN, 190, Nauka, M., 1989, 117–138 | MR
[4] Nagel A., Rudin W., Shapiro J., “Tangential boundary behavior of function in Dirichlet-type spaces”, Ann. Math., 116:2 (1982), 331–360 | DOI | MR | Zbl
[5] Krotov V. G., “O granichnom povedenii drobnykh integralov golomorfnykh funktsii v edinichnom share v $\mathbb C^n$”, Izv. vuzov. Matem., 1988, no. 4, 73–75 | MR
[6] Sueiro J., “Tangential boundary limits and exceptional sets for holomorphic functions in Dirichlet-type spaces”, Math. Ann., 286:4 (1990), 661–678 | DOI | MR | Zbl
[7] Beatrous F., “Boundary continuity of holomorphic Sobolev function in the ball”, Proc. Amer. Math. Soc., 97:1 (1986), 29–41 | DOI | MR
[8] Krotov V. G., “Tochnaya otsenka granichnogo povedeniya funktsii iz klassov Khardi–Soboleva $H_\alpha^p$ v kriticheskom sluchae $\alpha p=n$”, Dokl. AN SSSR, 319:1 (1991), 42–45 | MR | Zbl
[9] Volnyakov P. M., Otsenki svoistva Fatu dlya funktsii iz klassov tipa Khardi–Soboleva, Diss. $\dots$ k.f.-m.n., OGU, Odessa, 1992
[10] Krotov V. G., “O granichnom povedenii funktsii iz prostranstv tipa Khardi”, Izv. AN SSSR. Ser. matem., 54:5 (1990), 957–974 | Zbl
[11] Ahern P., “Exceptional sets for holomorphic Sobolev functions”, Michigan Math. J., 35:1 (1988), 29–41 | DOI | MR | Zbl