An exact estimate of the boundary behavior of functions from Hardy--Sobolev classes in the critical case
Matematičeskie zametki, Tome 62 (1997) no. 4, pp. 527-539.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the critical case $\alpha p=n$ functions from the Hardy-Sobolev spaces $H_\alpha^p(B^n)$ have a limit almost everywhere on the boundary along certain regions of exponential contact with the boundary. It is proved in the paper that the maximal operator associated with these regions is bounded as an operator from $H_\alpha^p(B^n)$ to $L^p(\partial B^n)$.
@article{MZM_1997_62_4_a5,
     author = {V. G. Krotov},
     title = {An exact estimate of the boundary behavior of functions from {Hardy--Sobolev} classes in the critical case},
     journal = {Matemati\v{c}eskie zametki},
     pages = {527--539},
     publisher = {mathdoc},
     volume = {62},
     number = {4},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1997_62_4_a5/}
}
TY  - JOUR
AU  - V. G. Krotov
TI  - An exact estimate of the boundary behavior of functions from Hardy--Sobolev classes in the critical case
JO  - Matematičeskie zametki
PY  - 1997
SP  - 527
EP  - 539
VL  - 62
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1997_62_4_a5/
LA  - ru
ID  - MZM_1997_62_4_a5
ER  - 
%0 Journal Article
%A V. G. Krotov
%T An exact estimate of the boundary behavior of functions from Hardy--Sobolev classes in the critical case
%J Matematičeskie zametki
%D 1997
%P 527-539
%V 62
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1997_62_4_a5/
%G ru
%F MZM_1997_62_4_a5
V. G. Krotov. An exact estimate of the boundary behavior of functions from Hardy--Sobolev classes in the critical case. Matematičeskie zametki, Tome 62 (1997) no. 4, pp. 527-539. http://geodesic.mathdoc.fr/item/MZM_1997_62_4_a5/

[1] Rudin U., Teoriya funktsii v edinichnom share v $\mathbb C^n$, Mir, M., 1984 | Zbl

[2] Ahern P., Cohn W., “Exceptional sets for Hardy–Sobolev function”, Indiana Univ. Math. J., 38:2 (1989), 417–452 | DOI | MR

[3] Krotov V. G., “Otsenki dlya maksimalnykh operatorov, svyazannykh s granichnym povedeniem, i ikh prilozheniya”, Tr. MIAN, 190, Nauka, M., 1989, 117–138 | MR

[4] Nagel A., Rudin W., Shapiro J., “Tangential boundary behavior of function in Dirichlet-type spaces”, Ann. Math., 116:2 (1982), 331–360 | DOI | MR | Zbl

[5] Krotov V. G., “O granichnom povedenii drobnykh integralov golomorfnykh funktsii v edinichnom share v $\mathbb C^n$”, Izv. vuzov. Matem., 1988, no. 4, 73–75 | MR

[6] Sueiro J., “Tangential boundary limits and exceptional sets for holomorphic functions in Dirichlet-type spaces”, Math. Ann., 286:4 (1990), 661–678 | DOI | MR | Zbl

[7] Beatrous F., “Boundary continuity of holomorphic Sobolev function in the ball”, Proc. Amer. Math. Soc., 97:1 (1986), 29–41 | DOI | MR

[8] Krotov V. G., “Tochnaya otsenka granichnogo povedeniya funktsii iz klassov Khardi–Soboleva $H_\alpha^p$ v kriticheskom sluchae $\alpha p=n$”, Dokl. AN SSSR, 319:1 (1991), 42–45 | MR | Zbl

[9] Volnyakov P. M., Otsenki svoistva Fatu dlya funktsii iz klassov tipa Khardi–Soboleva, Diss. $\dots$ k.f.-m.n., OGU, Odessa, 1992

[10] Krotov V. G., “O granichnom povedenii funktsii iz prostranstv tipa Khardi”, Izv. AN SSSR. Ser. matem., 54:5 (1990), 957–974 | Zbl

[11] Ahern P., “Exceptional sets for holomorphic Sobolev functions”, Michigan Math. J., 35:1 (1988), 29–41 | DOI | MR | Zbl