An exact estimate of the boundary behavior of functions from Hardy--Sobolev classes in the critical case
Matematičeskie zametki, Tome 62 (1997) no. 4, pp. 527-539

Voir la notice de l'article provenant de la source Math-Net.Ru

In the critical case $\alpha p=n$ functions from the Hardy-Sobolev spaces $H_\alpha^p(B^n)$ have a limit almost everywhere on the boundary along certain regions of exponential contact with the boundary. It is proved in the paper that the maximal operator associated with these regions is bounded as an operator from $H_\alpha^p(B^n)$ to $L^p(\partial B^n)$.
@article{MZM_1997_62_4_a5,
     author = {V. G. Krotov},
     title = {An exact estimate of the boundary behavior of functions from {Hardy--Sobolev} classes in the critical case},
     journal = {Matemati\v{c}eskie zametki},
     pages = {527--539},
     publisher = {mathdoc},
     volume = {62},
     number = {4},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1997_62_4_a5/}
}
TY  - JOUR
AU  - V. G. Krotov
TI  - An exact estimate of the boundary behavior of functions from Hardy--Sobolev classes in the critical case
JO  - Matematičeskie zametki
PY  - 1997
SP  - 527
EP  - 539
VL  - 62
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1997_62_4_a5/
LA  - ru
ID  - MZM_1997_62_4_a5
ER  - 
%0 Journal Article
%A V. G. Krotov
%T An exact estimate of the boundary behavior of functions from Hardy--Sobolev classes in the critical case
%J Matematičeskie zametki
%D 1997
%P 527-539
%V 62
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1997_62_4_a5/
%G ru
%F MZM_1997_62_4_a5
V. G. Krotov. An exact estimate of the boundary behavior of functions from Hardy--Sobolev classes in the critical case. Matematičeskie zametki, Tome 62 (1997) no. 4, pp. 527-539. http://geodesic.mathdoc.fr/item/MZM_1997_62_4_a5/