Completely integrable nonlinear dynamical systems of the Langmuir chains type
Matematičeskie zametki, Tome 62 (1997) no. 4, pp. 588-602.

Voir la notice de l'article provenant de la source Math-Net.Ru

The solution of the Cauchy problem for semi-infinite chains of ordinary differential equations, studied first by O. I. Bogoyavlenskii in 1987, is obtained in terms of the decomposition in a multidimensional continuous fraction of Markov vector functions (the resolvent functions) related to the chain of a nonsymmetric operator; the decomposition is performed by the Euler–Jacobi–Perron algorithm. The inverse spectral problem method, based on Lax pairs, on the theory of joint Hermite–Padé approximations, and on the Sturm–Liouville method for finite difference equations is used.
@article{MZM_1997_62_4_a10,
     author = {V. N. Sorokin},
     title = {Completely integrable nonlinear dynamical systems of the {Langmuir} chains type},
     journal = {Matemati\v{c}eskie zametki},
     pages = {588--602},
     publisher = {mathdoc},
     volume = {62},
     number = {4},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1997_62_4_a10/}
}
TY  - JOUR
AU  - V. N. Sorokin
TI  - Completely integrable nonlinear dynamical systems of the Langmuir chains type
JO  - Matematičeskie zametki
PY  - 1997
SP  - 588
EP  - 602
VL  - 62
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1997_62_4_a10/
LA  - ru
ID  - MZM_1997_62_4_a10
ER  - 
%0 Journal Article
%A V. N. Sorokin
%T Completely integrable nonlinear dynamical systems of the Langmuir chains type
%J Matematičeskie zametki
%D 1997
%P 588-602
%V 62
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1997_62_4_a10/
%G ru
%F MZM_1997_62_4_a10
V. N. Sorokin. Completely integrable nonlinear dynamical systems of the Langmuir chains type. Matematičeskie zametki, Tome 62 (1997) no. 4, pp. 588-602. http://geodesic.mathdoc.fr/item/MZM_1997_62_4_a10/

[1] Moser J. K., “Three integrable Hamiltonian systems connected with isospectral deformations”, Adv. Math., 16 (1975), 197–220 | DOI | MR | Zbl

[2] Bogoyavlenskii O. I., “Nekotorye konstruktsii integriruemykh dinamicheskikh sistem”, Izv. AN SSSR. Ser. matem., 51:4 (1987), 737–766 | MR | Zbl

[3] Bogoyavlenskii O. I., “Integriruemye dinamicheskie sistemy, svyazannye s uravneniem KdF”, Izv. AN SSSR. Ser. matem., 51:6 (1987), 1123–1141 | Zbl

[4] Osipov A. S., “Diskretnyi analog uravneniya Kortevega–de Friza (KdF): integrirovanie metodom obratnoi zadachi”, Matem. zametki, 56:6 (1994), 141–144 | MR | Zbl

[5] Yurko V. A., “Ob integrirovanii nelineinykh dinamicheskikh sistem metodom obratnoi spektralnoi zadachi”, Matem. zametki, 57:6 (1995), 945–949 | MR | Zbl

[6] Nikishin E. M., Sorokin V. N., Ratsionalnye approksimatsii i ortogonalnost, Nauka, M., 1988 | Zbl

[7] Parusnikov V. I., “Algoritm Yakobi–Perrona i sovmestnye priblizheniya funktsii”, Matem. sb., 114:2 (1981), 322–333 | MR | Zbl

[8] Kalyagin V. A., “Approksimatsii Ermita–Pade i spektralnaya teoriya nesimmetrichnykh operatorov”, Matem. sb., 185:6 (1994), 79–100 | Zbl

[9] Sorokin V. N., Connection between matrix Hermite–Padé approximation and matrix continued fraction in the example of a particular Toeplitz matrix, Reprint No. ANO-346, Universite des Sciences et Technologies de Lille, Lille, 1995

[10] Akhiezer N. I., Klassicheskaya problema momentov, Fizmatgiz, M., 1961

[11] Nikishin E. M., “O sovmestnykh approksimatsiyakh Pade”, Matem. sb., 113:4 (1980), 499–519 | MR | Zbl

[12] Sorokin V. N., “Skhodimost sovmestnykh approksimatsii Pade k funktsiyam stiltesovskogo tipa”, Izv. vuzov. Matem., 1987, no. 7, 48–56 | MR | Zbl

[13] Vshivtsev A. S., Sorokin V. N., “Teoriya vozmuschenii dlya uravneniya Shredingera s polinomialnym potentsialom”, Izv. vuzov. Fizika, 1994, no. 1, 95–101 | MR | Zbl