A first-order boundary value problem with boundary condition on a countable set of points
Matematičeskie zametki, Tome 62 (1997) no. 3, pp. 418-424
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $E=\{E_n\}$ be the family of subspaces spanning the eigenfunctions and adjoint functions of the boundary-value problem
$$
-i\frac{dy}{dx}=\lambda y,\quad -a\le x\le a,\qquad
U(y)\equiv\int_{-a}^ay(t)d\sigma(t)=0,
$$
that correspond to “close” eigenvalues (in the sense of the distance defined as the maximal of the Euclidean and the hyperbolic metrics). For a purely discrete measure $d\sigma$ it is shown that the system $E$ does not form an unconditional basis of subspaces in $L^2(-a,a)$ if at least one of the end points $\pm a$ is mass-free.
@article{MZM_1997_62_3_a9,
author = {A. M. Minkin},
title = {A first-order boundary value problem with boundary condition on a countable set of points},
journal = {Matemati\v{c}eskie zametki},
pages = {418--424},
publisher = {mathdoc},
volume = {62},
number = {3},
year = {1997},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1997_62_3_a9/}
}
A. M. Minkin. A first-order boundary value problem with boundary condition on a countable set of points. Matematičeskie zametki, Tome 62 (1997) no. 3, pp. 418-424. http://geodesic.mathdoc.fr/item/MZM_1997_62_3_a9/