A first-order boundary value problem with boundary condition on a countable set of points
Matematičeskie zametki, Tome 62 (1997) no. 3, pp. 418-424

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $E=\{E_n\}$ be the family of subspaces spanning the eigenfunctions and adjoint functions of the boundary-value problem $$ -i\frac{dy}{dx}=\lambda y,\quad -a\le x\le a,\qquad U(y)\equiv\int_{-a}^ay(t)d\sigma(t)=0, $$ that correspond to “close” eigenvalues (in the sense of the distance defined as the maximal of the Euclidean and the hyperbolic metrics). For a purely discrete measure $d\sigma$ it is shown that the system $E$ does not form an unconditional basis of subspaces in $L^2(-a,a)$ if at least one of the end points $\pm a$ is mass-free.
@article{MZM_1997_62_3_a9,
     author = {A. M. Minkin},
     title = {A first-order boundary value problem with boundary condition on a countable set of points},
     journal = {Matemati\v{c}eskie zametki},
     pages = {418--424},
     publisher = {mathdoc},
     volume = {62},
     number = {3},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1997_62_3_a9/}
}
TY  - JOUR
AU  - A. M. Minkin
TI  - A first-order boundary value problem with boundary condition on a countable set of points
JO  - Matematičeskie zametki
PY  - 1997
SP  - 418
EP  - 424
VL  - 62
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1997_62_3_a9/
LA  - ru
ID  - MZM_1997_62_3_a9
ER  - 
%0 Journal Article
%A A. M. Minkin
%T A first-order boundary value problem with boundary condition on a countable set of points
%J Matematičeskie zametki
%D 1997
%P 418-424
%V 62
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1997_62_3_a9/
%G ru
%F MZM_1997_62_3_a9
A. M. Minkin. A first-order boundary value problem with boundary condition on a countable set of points. Matematičeskie zametki, Tome 62 (1997) no. 3, pp. 418-424. http://geodesic.mathdoc.fr/item/MZM_1997_62_3_a9/