On a method for interpolating functions on chaotic nets
Matematičeskie zametki, Tome 62 (1997) no. 3, pp. 404-417.

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose $m,n\in\mathbb N$, $m\equiv n(\operatorname{mod}2)$, $K(x)=|x|^m$ for $m$ odd, $K(x)=|x|^m\ln|x|$ for $m$ even ($x\in\mathbb R^n$), $\mathscr P$ is the set of real polynomials in $n$ variables of total degree $\le m/2$, and $x_1,\dots,x_N\in \mathbb R^n$. We construct a function of the form $$ \sum_{j=1}^N\lambda_jK(x-x_j)+P(x), \qquad\text{where}\quad \lambda_j\in\mathbb R,\quad P\in\mathscr P,\quad \sum_{j=1}^N\lambda_jQ(x_j)=0\quad\forall Q\in\mathscr P, $$ coinciding with a given function $f(x)$ at the points $x_1,\dots,x_N$. Error estimates for the approximation of functions $f\in W_p^k(\Omega)$ and their $l$th-order derivatives in the norms $L_q(\Omega_\varepsilon)$ are obtained for this interpolation method, where $\Omega$ is a bounded domain in $\mathbb R^n$, $\varepsilon>0$, $\Omega_\varepsilon=\{x\in\Omega:\operatorname{dist}(x,\partial\Omega)>\varepsilon\}$.
@article{MZM_1997_62_3_a8,
     author = {O. V. Matveev},
     title = {On a method for interpolating functions on chaotic nets},
     journal = {Matemati\v{c}eskie zametki},
     pages = {404--417},
     publisher = {mathdoc},
     volume = {62},
     number = {3},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1997_62_3_a8/}
}
TY  - JOUR
AU  - O. V. Matveev
TI  - On a method for interpolating functions on chaotic nets
JO  - Matematičeskie zametki
PY  - 1997
SP  - 404
EP  - 417
VL  - 62
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1997_62_3_a8/
LA  - ru
ID  - MZM_1997_62_3_a8
ER  - 
%0 Journal Article
%A O. V. Matveev
%T On a method for interpolating functions on chaotic nets
%J Matematičeskie zametki
%D 1997
%P 404-417
%V 62
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1997_62_3_a8/
%G ru
%F MZM_1997_62_3_a8
O. V. Matveev. On a method for interpolating functions on chaotic nets. Matematičeskie zametki, Tome 62 (1997) no. 3, pp. 404-417. http://geodesic.mathdoc.fr/item/MZM_1997_62_3_a8/

[1] Alberg Dzh., Nilson E., Uolsh Dzh., Teoriya splainov i ee prilozheniya, Mir, M., 1972 | Zbl

[2] Shadrin A. Yu., “O priblizhenii funktsii interpolyatsionnymi splainami, zadannymi na neravnomernykh setkakh”, Matem. sb., 181:9 (1990), 1236–1255

[3] Duchon J., “Splines minimizing rotation-invariant semi-norms in Sobolev spaces”, Lecture Notes in Math., 571, 1977, 85–100 | MR | Zbl

[4] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975 | Zbl

[5] Stein I., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973

[6] Matveev O. V., “Splain-interpolyatsiya funktsii neskolkikh peremennykh i bazisy v prostranstvakh Soboleva”, Tr. MIRAN, 198, Nauka, M., 1992, 125–152 | Zbl

[7] Schwartz L., Théorie des distributions, V. 2, Hermann, Paris, 1951

[8] Stein I., Veis G., Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974 | Zbl

[9] Sobolev S. L., Vvedenie v teoriyu kubaturnykh formul, Nauka, M., 1974

[10] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Nauka, M., 1988

[11] Duchon J., “Interpolation des fonctions de deux variables suivant le principe de la flexion des plaques minces”, RAIRO Modél. Math. Anal. Numér., 10:12 (1976), 5–12 | MR

[12] Duchon J., “Sur l'erreur d'interpolation des fonctions de plusieurs variables par les $D^m$-splines”, RAIRO Modél. Math. Anal. Numér., 12:4 (1978), 325–334 | MR | Zbl

[13] Matveev O. V., “Approksimativnye svoistva interpolyatsionnykh $D^m$-splainov”, Dokl. AN SSSR, 321:1 (1991), 14–18 | Zbl

[14] Madych W. R., Nelson S. A., “Multivariate interpolation and conditionally positive definite functions”, Approx. Theory Appl. (N. S.), 4:4 (1988), 77–89 | MR | Zbl