On a method for interpolating functions on chaotic nets
Matematičeskie zametki, Tome 62 (1997) no. 3, pp. 404-417

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose $m,n\in\mathbb N$, $m\equiv n(\operatorname{mod}2)$, $K(x)=|x|^m$ for $m$ odd, $K(x)=|x|^m\ln|x|$ for $m$ even ($x\in\mathbb R^n$), $\mathscr P$ is the set of real polynomials in $n$ variables of total degree $\le m/2$, and $x_1,\dots,x_N\in \mathbb R^n$. We construct a function of the form $$ \sum_{j=1}^N\lambda_jK(x-x_j)+P(x), \qquad\text{where}\quad \lambda_j\in\mathbb R,\quad P\in\mathscr P,\quad \sum_{j=1}^N\lambda_jQ(x_j)=0\quad\forall Q\in\mathscr P, $$ coinciding with a given function $f(x)$ at the points $x_1,\dots,x_N$. Error estimates for the approximation of functions $f\in W_p^k(\Omega)$ and their $l$th-order derivatives in the norms $L_q(\Omega_\varepsilon)$ are obtained for this interpolation method, where $\Omega$ is a bounded domain in $\mathbb R^n$, $\varepsilon>0$, $\Omega_\varepsilon=\{x\in\Omega:\operatorname{dist}(x,\partial\Omega)>\varepsilon\}$.
@article{MZM_1997_62_3_a8,
     author = {O. V. Matveev},
     title = {On a method for interpolating functions on chaotic nets},
     journal = {Matemati\v{c}eskie zametki},
     pages = {404--417},
     publisher = {mathdoc},
     volume = {62},
     number = {3},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1997_62_3_a8/}
}
TY  - JOUR
AU  - O. V. Matveev
TI  - On a method for interpolating functions on chaotic nets
JO  - Matematičeskie zametki
PY  - 1997
SP  - 404
EP  - 417
VL  - 62
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1997_62_3_a8/
LA  - ru
ID  - MZM_1997_62_3_a8
ER  - 
%0 Journal Article
%A O. V. Matveev
%T On a method for interpolating functions on chaotic nets
%J Matematičeskie zametki
%D 1997
%P 404-417
%V 62
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1997_62_3_a8/
%G ru
%F MZM_1997_62_3_a8
O. V. Matveev. On a method for interpolating functions on chaotic nets. Matematičeskie zametki, Tome 62 (1997) no. 3, pp. 404-417. http://geodesic.mathdoc.fr/item/MZM_1997_62_3_a8/