Approximation by harmonic functions in the $C^m$-Norm and harmonic $C^m$-capacity of compact sets in $\mathbb R^n$
Matematičeskie zametki, Tome 62 (1997) no. 3, pp. 372-382.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the function $\Lambda^m(X)$, $0$, of compact sets $X$ in $\mathbb R^n$, $n\ge2$, defined as the distance in the space $C^m(X)\equiv\operatorname{lip}^m(X)$ from the function $|x|^2$ to the subspace $H_m(X)$ which is the closure in $C_m(X)$ of the class of functions harmonic in the neighborhood of $X$ (each function in its own neighborhood). We prove the equivalence of the conditions $\Lambda^m(X)=0$ and $C^m(X)=H^m(X)$. We derive an estimate from above that depends only on the geometrical properties of the set $X$ (on its volume).
@article{MZM_1997_62_3_a5,
     author = {Yu. A. Gorokhov},
     title = {Approximation by harmonic functions in the $C^m${-Norm} and harmonic $C^m$-capacity of compact sets in $\mathbb R^n$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {372--382},
     publisher = {mathdoc},
     volume = {62},
     number = {3},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1997_62_3_a5/}
}
TY  - JOUR
AU  - Yu. A. Gorokhov
TI  - Approximation by harmonic functions in the $C^m$-Norm and harmonic $C^m$-capacity of compact sets in $\mathbb R^n$
JO  - Matematičeskie zametki
PY  - 1997
SP  - 372
EP  - 382
VL  - 62
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1997_62_3_a5/
LA  - ru
ID  - MZM_1997_62_3_a5
ER  - 
%0 Journal Article
%A Yu. A. Gorokhov
%T Approximation by harmonic functions in the $C^m$-Norm and harmonic $C^m$-capacity of compact sets in $\mathbb R^n$
%J Matematičeskie zametki
%D 1997
%P 372-382
%V 62
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1997_62_3_a5/
%G ru
%F MZM_1997_62_3_a5
Yu. A. Gorokhov. Approximation by harmonic functions in the $C^m$-Norm and harmonic $C^m$-capacity of compact sets in $\mathbb R^n$. Matematičeskie zametki, Tome 62 (1997) no. 3, pp. 372-382. http://geodesic.mathdoc.fr/item/MZM_1997_62_3_a5/

[1] Khavinson D., “On uniform approximation by harmonic functions”, Michigan Math. J., 34:3 (1987), 465–473 | DOI | MR | Zbl

[2] Gote P. M., Paramonov P. V., “Approksimatsiya garmonicheskimi funktsiyami v $C^1$-norme i garmonicheskii $C^1$-poperechnik kompaktnykh mnozhestv v $\mathbb R^n$”, Matem. zametki, 53:4 (1993), 21–30 | MR

[3] Stein I., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973

[4] Paramonov P. V., “$C^m$-priblizheniya garmonicheskimi polinomami na kompaktnykh mnozhestvakh v $\mathbb R^n$”, Matem. sb., 184:2 (1993), 105–128 | Zbl

[5] Vitushkin A. G., “Analiticheskaya emkost v zadachakh teorii priblizhenii”, UMN, 122:6 (1967), 141–199

[6] Mateu J., Orobitg J., “Lipschitz approximation by harmonic function and some applications to spectral synthesis”, Indiana Univ. Math. J., 39:3 (1990), 703–736 | DOI | MR | Zbl