Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1997_62_3_a5, author = {Yu. A. Gorokhov}, title = {Approximation by harmonic functions in the $C^m${-Norm} and harmonic $C^m$-capacity of compact sets in $\mathbb R^n$}, journal = {Matemati\v{c}eskie zametki}, pages = {372--382}, publisher = {mathdoc}, volume = {62}, number = {3}, year = {1997}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1997_62_3_a5/} }
TY - JOUR AU - Yu. A. Gorokhov TI - Approximation by harmonic functions in the $C^m$-Norm and harmonic $C^m$-capacity of compact sets in $\mathbb R^n$ JO - Matematičeskie zametki PY - 1997 SP - 372 EP - 382 VL - 62 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1997_62_3_a5/ LA - ru ID - MZM_1997_62_3_a5 ER -
%0 Journal Article %A Yu. A. Gorokhov %T Approximation by harmonic functions in the $C^m$-Norm and harmonic $C^m$-capacity of compact sets in $\mathbb R^n$ %J Matematičeskie zametki %D 1997 %P 372-382 %V 62 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_1997_62_3_a5/ %G ru %F MZM_1997_62_3_a5
Yu. A. Gorokhov. Approximation by harmonic functions in the $C^m$-Norm and harmonic $C^m$-capacity of compact sets in $\mathbb R^n$. Matematičeskie zametki, Tome 62 (1997) no. 3, pp. 372-382. http://geodesic.mathdoc.fr/item/MZM_1997_62_3_a5/
[1] Khavinson D., “On uniform approximation by harmonic functions”, Michigan Math. J., 34:3 (1987), 465–473 | DOI | MR | Zbl
[2] Gote P. M., Paramonov P. V., “Approksimatsiya garmonicheskimi funktsiyami v $C^1$-norme i garmonicheskii $C^1$-poperechnik kompaktnykh mnozhestv v $\mathbb R^n$”, Matem. zametki, 53:4 (1993), 21–30 | MR
[3] Stein I., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973
[4] Paramonov P. V., “$C^m$-priblizheniya garmonicheskimi polinomami na kompaktnykh mnozhestvakh v $\mathbb R^n$”, Matem. sb., 184:2 (1993), 105–128 | Zbl
[5] Vitushkin A. G., “Analiticheskaya emkost v zadachakh teorii priblizhenii”, UMN, 122:6 (1967), 141–199
[6] Mateu J., Orobitg J., “Lipschitz approximation by harmonic function and some applications to spectral synthesis”, Indiana Univ. Math. J., 39:3 (1990), 703–736 | DOI | MR | Zbl