@article{MZM_1997_62_3_a1,
author = {V. V. Arestov and V. Yu. Raevskaya},
title = {An extremal problem for algebraic polynomials with zero mean value on an interval},
journal = {Matemati\v{c}eskie zametki},
pages = {332--342},
year = {1997},
volume = {62},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1997_62_3_a1/}
}
V. V. Arestov; V. Yu. Raevskaya. An extremal problem for algebraic polynomials with zero mean value on an interval. Matematičeskie zametki, Tome 62 (1997) no. 3, pp. 332-342. http://geodesic.mathdoc.fr/item/MZM_1997_62_3_a1/
[1] Babenko A. G., Ekstremalnye svoistva polinomov i tochnye otsenki srednekvadratichnykh priblizhenii, Diss. ... k. f.-m. n., Sverdlovsk, 1987
[2] Bernshtein S. N., “O formulakh kvadratur Kotesa i Chebysheva”, Sobranie sochinenii (v 4-kh tomakh), T. 2, M., 1954, 200–204
[3] Babenko A. G., “Ob odnoi ekstremalnoi zadache dlya polinomov”, Matem. zametki, 35:3 (1984), 349–356 | MR | Zbl
[4] Taikov L. V., “Odin krug ekstremalnykh zadach dlya trigonometricheskikh polinomov”, UMN, 20:3 (1965), 205–211 | MR | Zbl
[5] Babenko A. G., “Neravenstvo Dzheksona dlya srednekvadratichnykh priblizhenii periodicheskikh funktsii trigonometricheskimi polinomami na ravnomernoi setke”, Matem. zametki, 43:4 (1988), 460–473 | MR
[6] Fazekas G., Levinstein V. I., “On upper bounds for code distance and covering radius of designs in polynomial metric spaces”, J. Combin. Theory. Ser. A, 70:2 (1995), 267–288 | DOI | MR | Zbl
[7] Yudin V. A., “Pokrytiya sfery i ekstremalnye svoistva ortogonalnykh mnogochlenov”, Diskretnaya matem., 7:3 (1995), 81–88 | MR | Zbl
[8] Krylov V. I., Priblizhennoe vychislenie integralov, Fizmatgiz, M., 1959
[9] Sege G., Ortogonalnye mnogochleny, Fizmatgiz, M., 1962