On a conservative integral equation with two kernels
Matematičeskie zametki, Tome 62 (1997) no. 3, pp. 323-331
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the solvability of the integral equation
$$
f(x)=g(x)+\int_0^\infty T_1(x-t)f(t)\,dt+\int_{-\infty}^0T_2(x-t)f(t)\,dt,\qquad x\in\mathbb R,
$$
where $f\in L_1^{\operatorname{loc}}(\mathbb R)$ is the unknown function and $g$, $T_1$ and $T_2$ are given functions satisfying the conditions
$$
g\in L_1(\mathbb R),\quad
0\le T_j\in L_1(\mathbb R),\quad
\int_{-\infty}^\infty T_j(t)\,dt=1,\qquad
j=1,2.
$$
Most attention is paid to the nontrivial solvability of the homogeneous equation
$$
s(x)=\int_0^\infty T_1(x-t)s(t)\,dt+\int_{-\infty}^0T_2(x-t)s(t)\,dt,\qquad
x\in\mathbb R.
$$
@article{MZM_1997_62_3_a0,
author = {L. G. Arabadzhyan},
title = {On a conservative integral equation with two kernels},
journal = {Matemati\v{c}eskie zametki},
pages = {323--331},
publisher = {mathdoc},
volume = {62},
number = {3},
year = {1997},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1997_62_3_a0/}
}
L. G. Arabadzhyan. On a conservative integral equation with two kernels. Matematičeskie zametki, Tome 62 (1997) no. 3, pp. 323-331. http://geodesic.mathdoc.fr/item/MZM_1997_62_3_a0/