On a conservative integral equation with two kernels
Matematičeskie zametki, Tome 62 (1997) no. 3, pp. 323-331.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the solvability of the integral equation $$ f(x)=g(x)+\int_0^\infty T_1(x-t)f(t)\,dt+\int_{-\infty}^0T_2(x-t)f(t)\,dt,\qquad x\in\mathbb R, $$ where $f\in L_1^{\operatorname{loc}}(\mathbb R)$ is the unknown function and $g$, $T_1$ and $T_2$ are given functions satisfying the conditions $$ g\in L_1(\mathbb R),\quad 0\le T_j\in L_1(\mathbb R),\quad \int_{-\infty}^\infty T_j(t)\,dt=1,\qquad j=1,2. $$ Most attention is paid to the nontrivial solvability of the homogeneous equation $$ s(x)=\int_0^\infty T_1(x-t)s(t)\,dt+\int_{-\infty}^0T_2(x-t)s(t)\,dt,\qquad x\in\mathbb R. $$
@article{MZM_1997_62_3_a0,
     author = {L. G. Arabadzhyan},
     title = {On a conservative integral equation with two kernels},
     journal = {Matemati\v{c}eskie zametki},
     pages = {323--331},
     publisher = {mathdoc},
     volume = {62},
     number = {3},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1997_62_3_a0/}
}
TY  - JOUR
AU  - L. G. Arabadzhyan
TI  - On a conservative integral equation with two kernels
JO  - Matematičeskie zametki
PY  - 1997
SP  - 323
EP  - 331
VL  - 62
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1997_62_3_a0/
LA  - ru
ID  - MZM_1997_62_3_a0
ER  - 
%0 Journal Article
%A L. G. Arabadzhyan
%T On a conservative integral equation with two kernels
%J Matematičeskie zametki
%D 1997
%P 323-331
%V 62
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1997_62_3_a0/
%G ru
%F MZM_1997_62_3_a0
L. G. Arabadzhyan. On a conservative integral equation with two kernels. Matematičeskie zametki, Tome 62 (1997) no. 3, pp. 323-331. http://geodesic.mathdoc.fr/item/MZM_1997_62_3_a0/

[1] Engibaryan N. B., Arabadzhyan L. G., “O nekotorykh zadachakh faktorizatsii dlya integralnykh operatorov tipa svertki”, Differents. uravneniya, 26:8 (1990), 1442–1452 | MR

[2] Arutyunyan A. A., “O faktorizatsii odnogo integralnogo operatora”, Differentsialnye i integralnye uravneniya, Erevan, 1979, 43–48

[3] Engibaryan N. B., Arutyunyan A. A., “Integralnye uravneniya na polupryamoi s raznostnymi yadrami i nelineinye funktsionalnye uravneniya”, Matem. sb., 97:5 (1975), 35–58 | Zbl

[4] Arabadzhyan L. G., Engibaryan N. B., “Uravneniya v svertkakh i nelineinye funktsionalnye uravneniya”, Itogi nauki i tekhn. Matem. analiz, 22, VINITI, M., 1984, 175–244 | MR

[5] Arabadzhyan L. G., “O konservativnom uravnenii Vinera–Khopfa”, Izv. AN ArmSSR. Ser. matem., 16:1 (1981), 65–80 | MR

[6] Bellman R., Kuk K., Differentsialno-raznostnye uravneniya, Mir, M., 1967 | Zbl

[7] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1981

[8] Arabadzhyan L. G., “Ob odnom integralnom uravnenii teorii perenosa v neodnorodnoi srede”, Differents. uravneniya, 23:9 (1987) | MR | Zbl

[9] Karlin S., “On the renewal equation”, Pacific J. Math., 5:2 (1955), 229–257 | MR | Zbl

[10] Rudin U., Funktsionalnyi analiz, Mir, M., 1975

[11] Arabadzhyan L. G., “O faktorizatsii konservativnykh integralnykh operatorov Vinera–Khopfa”, Matem. zametki, 46:1 (1989), 3–10 | MR | Zbl