Exact maximum likelihood estimator of the structure of a stratified population
Matematičeskie zametki, Tome 62 (1997) no. 2, pp. 216-222.

Voir la notice de l'article provenant de la source Math-Net.Ru

An exact expression for the extreme values of the integer vector $\overline N=(N_1,\dots,N_k)$ that maximize the function $$ \prod_{j=1}^k\binom{N_j}{l_j} $$ for arbitrary integers $l_1>0,\dots,l_k>0$, $k\ge2$, and a given $N^0=N_1+\dots+N_k$ is derived. Also, statistical applications of the result are discussed.
@article{MZM_1997_62_2_a5,
     author = {G. I. Ivchenko and S. A. Khonov and E. A. Ivanov},
     title = {Exact maximum likelihood estimator of the structure of a stratified population},
     journal = {Matemati\v{c}eskie zametki},
     pages = {216--222},
     publisher = {mathdoc},
     volume = {62},
     number = {2},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1997_62_2_a5/}
}
TY  - JOUR
AU  - G. I. Ivchenko
AU  - S. A. Khonov
AU  - E. A. Ivanov
TI  - Exact maximum likelihood estimator of the structure of a stratified population
JO  - Matematičeskie zametki
PY  - 1997
SP  - 216
EP  - 222
VL  - 62
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1997_62_2_a5/
LA  - ru
ID  - MZM_1997_62_2_a5
ER  - 
%0 Journal Article
%A G. I. Ivchenko
%A S. A. Khonov
%A E. A. Ivanov
%T Exact maximum likelihood estimator of the structure of a stratified population
%J Matematičeskie zametki
%D 1997
%P 216-222
%V 62
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1997_62_2_a5/
%G ru
%F MZM_1997_62_2_a5
G. I. Ivchenko; S. A. Khonov; E. A. Ivanov. Exact maximum likelihood estimator of the structure of a stratified population. Matematičeskie zametki, Tome 62 (1997) no. 2, pp. 216-222. http://geodesic.mathdoc.fr/item/MZM_1997_62_2_a5/

[1] Ivchenko G. I., Khonov S. A., “Maximum likelihood estimation for a stratified finite population”, Math. Methods Statist., 3:4 (1994), 346–361 | MR | Zbl

[2] Ivchenko G. I., Khonov S. A., “Statisticheskoe otsenivanie sostava konechnoi sovokupnosti”, Diskretnaya matem., 8:1 (1996), 3–40 | MR