Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1997_62_2_a10, author = {V. N. Starovoitov}, title = {The dynamics of a two-component fluid in the presence of capillary forces}, journal = {Matemati\v{c}eskie zametki}, pages = {293--305}, publisher = {mathdoc}, volume = {62}, number = {2}, year = {1997}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1997_62_2_a10/} }
V. N. Starovoitov. The dynamics of a two-component fluid in the presence of capillary forces. Matematičeskie zametki, Tome 62 (1997) no. 2, pp. 293-305. http://geodesic.mathdoc.fr/item/MZM_1997_62_2_a10/
[1] Starovoitov V. N., “Model dvizheniya dvukhkomponentnoi zhidkosti s uchetom kapillyarnykh sil”, Zhurn. prikl. mekh. i tekhn. fiziki, 1994, no. 6, 61–71 | MR
[2] Van der Waals J. D., “Thermodynamics theory of capillarity flow under the hypothesis of a continous variation of density”, Verhandel. Konink. Akad. Weten. Amsterdam. Sec. 1, 1:8 (1893)
[3] Korteweg D. J., “Sur la forme que prennent les équations du mouvement des fluides si l'on tient compte des forces cappillaires causées par des variations de densité”, Archives Neerlandaises des Sciences Exactes et Naturelles. Ser. II, 6 (1901), 1–24
[4] Cahn J. W., Hilliard J. E., “Free energy of a non-uniform system. Interfacial free energy”, J. Chem. Phys., 28 (1958), 258–267 | DOI
[5] Tribel Kh., Teoriya interpolyatsii, funktsionalnye prostranstva, differentsialnye operatory, Mir, M., 1980
[6] Sobolevskii P. E., “O nestatsionarnykh uravneniyakh gidrodinamiki vyazkoi zhidkosti”, Dokl. AN SSSR, 128:1 (1959), 45–48 | MR | Zbl
[7] Khenri D., Geometricheskaya teoriya polulineinykh parabolicheskikh uravnenii, Mir, M., 1985
[8] Ladyzhenskaya O. A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970
[9] Kalantarov V. K., “O globalnom povedenii reshenii nekotorykh nelineinykh uravnenii chetvertogo poryadka”, Kraevye zadachi matematicheskoi fiziki i smezhnye voprosy teorii funktsii, Zapiski nauch. sem. LOMI, 163, Nauka, L., 1987, 66–75 | Zbl
[10] Elliot C. M., Songmu Z., “On the Cahn–Hilliard equation”, Arch. Rational Mech. Anal., 96 (1986), 339–357 | DOI | MR | Zbl
[11] Nicolaenko B., Scheurer B., “Low dimensional behaviour of the pattern formation Cahn–Hilliard equation”, Trends and practice of Nonlinear Analysis, Elsevier Sci. Publ. North-Holland, 1985, 323–336 | MR
[12] Alikakos N. D., Fusco G., “Slow dynamics for the Cahn–Hilliard equation in higher space dimensions. Spectral estimates”, Comm. Partial Differential Equations, 19 (1994), 1397–1447 | DOI | MR | Zbl
[13] Ladyzhenskaya O. A., “O dinamicheskoi sisteme, porozhdaemoi uravneniyami Nave–Stoksa”, Zapiski nauch. sem. LOMI, 27, Nauka, L., 1972, 91–115 | MR | Zbl
[14] Ladyzhenskaya O. A., “O nakhozhdenii minimalnykh globalnykh attraktorov dlya uravnenii Nave–Stoksa i drugikh uravnenii s chastnymi proizvodnymi”, UMN, 42:6 (258) (1987), 25–60 | MR | Zbl
[15] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki. T. 4. Analiz operatorov, Mir, M., 1982