The dynamics of a two-component fluid in the presence of capillary forces
Matematičeskie zametki, Tome 62 (1997) no. 2, pp. 293-305.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper we study the qualitative behavior as $t\to\infty$ of the solution of the Cauchy problem for a system of equations describing a dynamics of a two-component viscous fluid. The model under consideration takes into account the mutual diffusion of the fluid components as well as their capillary interaction. We describe the $\omega$-limit set of trajectories of the dynamical system generated by the problem. It is proved that the stationary solution of the problem, is a homogeneous stationary distribution of one of the components, is asymptotically stable. Any other stationary solution is not asymptotically stable and is even unstable if there are no close stationary solutions corresponding to a smaller energy level.
@article{MZM_1997_62_2_a10,
     author = {V. N. Starovoitov},
     title = {The dynamics of a two-component fluid in the presence of capillary forces},
     journal = {Matemati\v{c}eskie zametki},
     pages = {293--305},
     publisher = {mathdoc},
     volume = {62},
     number = {2},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1997_62_2_a10/}
}
TY  - JOUR
AU  - V. N. Starovoitov
TI  - The dynamics of a two-component fluid in the presence of capillary forces
JO  - Matematičeskie zametki
PY  - 1997
SP  - 293
EP  - 305
VL  - 62
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1997_62_2_a10/
LA  - ru
ID  - MZM_1997_62_2_a10
ER  - 
%0 Journal Article
%A V. N. Starovoitov
%T The dynamics of a two-component fluid in the presence of capillary forces
%J Matematičeskie zametki
%D 1997
%P 293-305
%V 62
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1997_62_2_a10/
%G ru
%F MZM_1997_62_2_a10
V. N. Starovoitov. The dynamics of a two-component fluid in the presence of capillary forces. Matematičeskie zametki, Tome 62 (1997) no. 2, pp. 293-305. http://geodesic.mathdoc.fr/item/MZM_1997_62_2_a10/

[1] Starovoitov V. N., “Model dvizheniya dvukhkomponentnoi zhidkosti s uchetom kapillyarnykh sil”, Zhurn. prikl. mekh. i tekhn. fiziki, 1994, no. 6, 61–71 | MR

[2] Van der Waals J. D., “Thermodynamics theory of capillarity flow under the hypothesis of a continous variation of density”, Verhandel. Konink. Akad. Weten. Amsterdam. Sec. 1, 1:8 (1893)

[3] Korteweg D. J., “Sur la forme que prennent les équations du mouvement des fluides si l'on tient compte des forces cappillaires causées par des variations de densité”, Archives Neerlandaises des Sciences Exactes et Naturelles. Ser. II, 6 (1901), 1–24

[4] Cahn J. W., Hilliard J. E., “Free energy of a non-uniform system. Interfacial free energy”, J. Chem. Phys., 28 (1958), 258–267 | DOI

[5] Tribel Kh., Teoriya interpolyatsii, funktsionalnye prostranstva, differentsialnye operatory, Mir, M., 1980

[6] Sobolevskii P. E., “O nestatsionarnykh uravneniyakh gidrodinamiki vyazkoi zhidkosti”, Dokl. AN SSSR, 128:1 (1959), 45–48 | MR | Zbl

[7] Khenri D., Geometricheskaya teoriya polulineinykh parabolicheskikh uravnenii, Mir, M., 1985

[8] Ladyzhenskaya O. A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970

[9] Kalantarov V. K., “O globalnom povedenii reshenii nekotorykh nelineinykh uravnenii chetvertogo poryadka”, Kraevye zadachi matematicheskoi fiziki i smezhnye voprosy teorii funktsii, Zapiski nauch. sem. LOMI, 163, Nauka, L., 1987, 66–75 | Zbl

[10] Elliot C. M., Songmu Z., “On the Cahn–Hilliard equation”, Arch. Rational Mech. Anal., 96 (1986), 339–357 | DOI | MR | Zbl

[11] Nicolaenko B., Scheurer B., “Low dimensional behaviour of the pattern formation Cahn–Hilliard equation”, Trends and practice of Nonlinear Analysis, Elsevier Sci. Publ. North-Holland, 1985, 323–336 | MR

[12] Alikakos N. D., Fusco G., “Slow dynamics for the Cahn–Hilliard equation in higher space dimensions. Spectral estimates”, Comm. Partial Differential Equations, 19 (1994), 1397–1447 | DOI | MR | Zbl

[13] Ladyzhenskaya O. A., “O dinamicheskoi sisteme, porozhdaemoi uravneniyami Nave–Stoksa”, Zapiski nauch. sem. LOMI, 27, Nauka, L., 1972, 91–115 | MR | Zbl

[14] Ladyzhenskaya O. A., “O nakhozhdenii minimalnykh globalnykh attraktorov dlya uravnenii Nave–Stoksa i drugikh uravnenii s chastnymi proizvodnymi”, UMN, 42:6 (258) (1987), 25–60 | MR | Zbl

[15] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki. T. 4. Analiz operatorov, Mir, M., 1982