The dynamics of a two-component fluid in the presence of capillary forces
Matematičeskie zametki, Tome 62 (1997) no. 2, pp. 293-305

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper we study the qualitative behavior as $t\to\infty$ of the solution of the Cauchy problem for a system of equations describing a dynamics of a two-component viscous fluid. The model under consideration takes into account the mutual diffusion of the fluid components as well as their capillary interaction. We describe the $\omega$-limit set of trajectories of the dynamical system generated by the problem. It is proved that the stationary solution of the problem, is a homogeneous stationary distribution of one of the components, is asymptotically stable. Any other stationary solution is not asymptotically stable and is even unstable if there are no close stationary solutions corresponding to a smaller energy level.
@article{MZM_1997_62_2_a10,
     author = {V. N. Starovoitov},
     title = {The dynamics of a two-component fluid in the presence of capillary forces},
     journal = {Matemati\v{c}eskie zametki},
     pages = {293--305},
     publisher = {mathdoc},
     volume = {62},
     number = {2},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1997_62_2_a10/}
}
TY  - JOUR
AU  - V. N. Starovoitov
TI  - The dynamics of a two-component fluid in the presence of capillary forces
JO  - Matematičeskie zametki
PY  - 1997
SP  - 293
EP  - 305
VL  - 62
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1997_62_2_a10/
LA  - ru
ID  - MZM_1997_62_2_a10
ER  - 
%0 Journal Article
%A V. N. Starovoitov
%T The dynamics of a two-component fluid in the presence of capillary forces
%J Matematičeskie zametki
%D 1997
%P 293-305
%V 62
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1997_62_2_a10/
%G ru
%F MZM_1997_62_2_a10
V. N. Starovoitov. The dynamics of a two-component fluid in the presence of capillary forces. Matematičeskie zametki, Tome 62 (1997) no. 2, pp. 293-305. http://geodesic.mathdoc.fr/item/MZM_1997_62_2_a10/