Even permutations not representable in the form of a product of two permutations of given order
Matematičeskie zametki, Tome 62 (1997) no. 2, pp. 169-177
Cet article a éte moissonné depuis la source Math-Net.Ru
The paper gives a description the permutations from the alternating group $A_n$ that, for a given positive integer $k\ge4$, cannot be presented as a product of two permutations each of which contains only cycles of lengths 1 and 4 in the expansion into independent cycles. We construct a set $Q_k$ such that, for each $n$ from $Q_k$, the group $A_n$ contains a permutation not representable in the above form. We give answers to two questions of Brenner and Evans on the representability of even permutations in the form of a product of two permutations of a given order $k$.
@article{MZM_1997_62_2_a1,
author = {V. G. Bardakov},
title = {Even permutations not representable in the form of a product of two permutations of given order},
journal = {Matemati\v{c}eskie zametki},
pages = {169--177},
year = {1997},
volume = {62},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1997_62_2_a1/}
}
V. G. Bardakov. Even permutations not representable in the form of a product of two permutations of given order. Matematičeskie zametki, Tome 62 (1997) no. 2, pp. 169-177. http://geodesic.mathdoc.fr/item/MZM_1997_62_2_a1/
[1] Brenner J. L., Evans R. J., “Even permutations as a product of two elements of order five”, J. Combin. Theory. Ser. A, 45:2 (1987), 196–206 | DOI | MR | Zbl
[2] Bardakov V. G., “Razlozhenie chetnykh podstanovok na dva mnozhitelya zadannogo tsiklovogo stroeniya”, Diskretnaya matem., 5:1 (1993), 70–90 | Zbl
[3] Goldstein R. Z., Turner E. C., “Counting orbits of a product of permutations”, Discrete Math., 80:3 (1990), 267–272 | DOI | MR | Zbl
[4] Bertram E., “Even permutations as a product of two conjugate cycles”, J. Combin. Theory. Ser. A, 12:2 (1972), 368–380 | DOI | MR | Zbl
[5] Kargapolov M. I., Merzlyakov Yu. I., Osnovy teorii grupp, 3-e izd., Nauka, M., 1982 | Zbl