Even permutations not representable in the form of a product of two permutations of given order
Matematičeskie zametki, Tome 62 (1997) no. 2, pp. 169-177.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper gives a description the permutations from the alternating group $A_n$ that, for a given positive integer $k\ge4$, cannot be presented as a product of two permutations each of which contains only cycles of lengths 1 and 4 in the expansion into independent cycles. We construct a set $Q_k$ such that, for each $n$ from $Q_k$, the group $A_n$ contains a permutation not representable in the above form. We give answers to two questions of Brenner and Evans on the representability of even permutations in the form of a product of two permutations of a given order $k$.
@article{MZM_1997_62_2_a1,
     author = {V. G. Bardakov},
     title = {Even permutations not representable in the form of a product of two permutations of given order},
     journal = {Matemati\v{c}eskie zametki},
     pages = {169--177},
     publisher = {mathdoc},
     volume = {62},
     number = {2},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1997_62_2_a1/}
}
TY  - JOUR
AU  - V. G. Bardakov
TI  - Even permutations not representable in the form of a product of two permutations of given order
JO  - Matematičeskie zametki
PY  - 1997
SP  - 169
EP  - 177
VL  - 62
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1997_62_2_a1/
LA  - ru
ID  - MZM_1997_62_2_a1
ER  - 
%0 Journal Article
%A V. G. Bardakov
%T Even permutations not representable in the form of a product of two permutations of given order
%J Matematičeskie zametki
%D 1997
%P 169-177
%V 62
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1997_62_2_a1/
%G ru
%F MZM_1997_62_2_a1
V. G. Bardakov. Even permutations not representable in the form of a product of two permutations of given order. Matematičeskie zametki, Tome 62 (1997) no. 2, pp. 169-177. http://geodesic.mathdoc.fr/item/MZM_1997_62_2_a1/

[1] Brenner J. L., Evans R. J., “Even permutations as a product of two elements of order five”, J. Combin. Theory. Ser. A, 45:2 (1987), 196–206 | DOI | MR | Zbl

[2] Bardakov V. G., “Razlozhenie chetnykh podstanovok na dva mnozhitelya zadannogo tsiklovogo stroeniya”, Diskretnaya matem., 5:1 (1993), 70–90 | Zbl

[3] Goldstein R. Z., Turner E. C., “Counting orbits of a product of permutations”, Discrete Math., 80:3 (1990), 267–272 | DOI | MR | Zbl

[4] Bertram E., “Even permutations as a product of two conjugate cycles”, J. Combin. Theory. Ser. A, 12:2 (1972), 368–380 | DOI | MR | Zbl

[5] Kargapolov M. I., Merzlyakov Yu. I., Osnovy teorii grupp, 3-e izd., Nauka, M., 1982 | Zbl