Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1997_62_2_a1, author = {V. G. Bardakov}, title = {Even permutations not representable in the form of a product of two permutations of given order}, journal = {Matemati\v{c}eskie zametki}, pages = {169--177}, publisher = {mathdoc}, volume = {62}, number = {2}, year = {1997}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1997_62_2_a1/} }
TY - JOUR AU - V. G. Bardakov TI - Even permutations not representable in the form of a product of two permutations of given order JO - Matematičeskie zametki PY - 1997 SP - 169 EP - 177 VL - 62 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1997_62_2_a1/ LA - ru ID - MZM_1997_62_2_a1 ER -
V. G. Bardakov. Even permutations not representable in the form of a product of two permutations of given order. Matematičeskie zametki, Tome 62 (1997) no. 2, pp. 169-177. http://geodesic.mathdoc.fr/item/MZM_1997_62_2_a1/
[1] Brenner J. L., Evans R. J., “Even permutations as a product of two elements of order five”, J. Combin. Theory. Ser. A, 45:2 (1987), 196–206 | DOI | MR | Zbl
[2] Bardakov V. G., “Razlozhenie chetnykh podstanovok na dva mnozhitelya zadannogo tsiklovogo stroeniya”, Diskretnaya matem., 5:1 (1993), 70–90 | Zbl
[3] Goldstein R. Z., Turner E. C., “Counting orbits of a product of permutations”, Discrete Math., 80:3 (1990), 267–272 | DOI | MR | Zbl
[4] Bertram E., “Even permutations as a product of two conjugate cycles”, J. Combin. Theory. Ser. A, 12:2 (1972), 368–380 | DOI | MR | Zbl
[5] Kargapolov M. I., Merzlyakov Yu. I., Osnovy teorii grupp, 3-e izd., Nauka, M., 1982 | Zbl