A representation of one-dimensional attractors of $A$-diffeomorphisms by hyperbolic homeomorphisms
Matematičeskie zametki, Tome 62 (1997) no. 1, pp. 76-87

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a representation for the restrictions of $A$-diffeomorphisms of closed orientable surfaces of genus $>1$ from a homotopy class containing a pseudo-Anosov diffeomorphism to all one-dimensional attractors that do not contain special pairs of boundary periodic points. The representation is given by the restriction of a hyperbolic homeomorphism to an invariant zero-dimensional set formed by the intersection of two transversal geodesic laminations. It is shown how this result can be generalized to the representation of the restrictions of $A$-diffeomorphisms defined on a closed surface of any genus to arbitrary one-dimensional attractors.
@article{MZM_1997_62_1_a7,
     author = {V. Z. Grines},
     title = {A representation of one-dimensional attractors of $A$-diffeomorphisms by hyperbolic homeomorphisms},
     journal = {Matemati\v{c}eskie zametki},
     pages = {76--87},
     publisher = {mathdoc},
     volume = {62},
     number = {1},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1997_62_1_a7/}
}
TY  - JOUR
AU  - V. Z. Grines
TI  - A representation of one-dimensional attractors of $A$-diffeomorphisms by hyperbolic homeomorphisms
JO  - Matematičeskie zametki
PY  - 1997
SP  - 76
EP  - 87
VL  - 62
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1997_62_1_a7/
LA  - ru
ID  - MZM_1997_62_1_a7
ER  - 
%0 Journal Article
%A V. Z. Grines
%T A representation of one-dimensional attractors of $A$-diffeomorphisms by hyperbolic homeomorphisms
%J Matematičeskie zametki
%D 1997
%P 76-87
%V 62
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1997_62_1_a7/
%G ru
%F MZM_1997_62_1_a7
V. Z. Grines. A representation of one-dimensional attractors of $A$-diffeomorphisms by hyperbolic homeomorphisms. Matematičeskie zametki, Tome 62 (1997) no. 1, pp. 76-87. http://geodesic.mathdoc.fr/item/MZM_1997_62_1_a7/